• Title/Summary/Keyword: fractured zone

Search Result 147, Processing Time 0.025 seconds

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.

A Study of Hydrogeological Properties Concerning to Groundwater Interference between Wells in the Yeongdo Island, Pusan, Korea (부산직할시 영도지역의 정호간 지하수 간섭에 관한 수리지질 특성 연구)

  • 김항묵
    • Journal of the Korean Professional Engineers Association
    • /
    • v.27 no.6
    • /
    • pp.72-84
    • /
    • 1994
  • This is about an environmental study of groundwater interference by hydrodynamic dispersion between the well A and well C in Dongsam-dong, the Yeongdo Island, Pusan, Korea. The groundwater in the study wells come from the fracture zones deeply seated in welded lapilli rhyodacitic tuff of the Late Cretaceous Yucheon Group. The boring depth at the well A is 190 meters, and the optimal pumping rate of the well A is about 100 cubic meters per day therein. The fractured aquifers in impermeable welded tuff show the conjugate fracturing type and are of anisotropic. The aquifers along two fracture zones in the well A are 80 and 100 meters in depth, respectively. It is not suggested that those fractured aquifers are simply connected between the well A and C. The sea level fluctuation by ebb and high tides in a day is not effective to the groundwater table in the well A. The pumping for 15 days at the well A doesn't give rise to any changes of the groundwater levels in the neighbor well C. The radius of influence of the well A is measured as less than 200 meters. The measuring electric conductivity for the test of salt tracer doesn't testify any relationship between the well A and the well C. There is the main difference between the well A and the well C on the basis of the water analysis of those wells. the well A is located in the high content zone of salt much over the standard value for drinking, whereas the other wells B. C. D are in the low content area of salt below the standard value. It is elucidated for the high content zone of salt in Yeongdo around the well A to have been uplifted over 20 meters.

  • PDF

Application of TSP Suvey to Predict the Ground Conditions Ahead of Tunnel Face (터널막장 전방 파악을 위한 TSP(Tunnel Seismic Prediction) 탐사 사례 연구)

  • Cho, Sung-Won;Lee, Hyo;Yoo, Jae-Won;Kim, Do-Hun Dave;Nam, Seung-Hyeok
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.40-49
    • /
    • 2013
  • To predict ground conditions ahead of the tunnel face, seismic refraction survey has been widely used. But due to the development in seismic equipment and techniques, tomography using borehole and others are actively applied in recent years. This study has a purpose to prevent stability problems during excavation and construction of tunnels by predicting unfavorable ground conditions such as fault, fractured zone and rock quality variation zone ahead of the tunnel face using TSP survey equipment. In this study, the validity of predicting ground conditions ahead of tunnel face by TSP survey has been evaluated through the case study in the road construction site.

A Study on Displacement of Tunnel in the Brittel Fracture Zone under Excavation Construction (굴착시공 중 취약지반구간에서 터널변위 거동 연구)

  • Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.45-52
    • /
    • 2014
  • The tunnel construction is increasing in order to secure a good driving performance of the car and train. A cases of tunnel collapse and the tunnel excessive displacement are increasing with the increase in tunnel construction. In terms of empirical construction methods using the strength characteristics of soil, it is important for tunnel construction to analyze causes of collapse and displacement. In the paper, it was analyzed the causes of collapse and excessive displacement of tunnel in the fractured ground condition. The results of analysis is that the increase of rainfall and lasting increase of displacement and large scale fractured ground are interconnected.

3D finite element simulation of human proximal femoral fracture under quasi-static load

  • Hambli, Ridha
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • In this paper, a simple and accurate finite element model coupled to quasi-brittle damage law able to describe the multiple cracks initiation and their progressive propagation is developed in order to predict the complete force-displacement curve and the fracture pattern of human proximal femur under quasi-static load. The motivation of this work was to propose a simple and practical FE model with a good compromise between complexity and accuracy of the simulation considering a limited number of model parameters that can predict proximal femur fracture more accurately and physically than the fracture criteria based models. Different damage laws for cortical and trabecular bone are proposed based on experimental results to describe the inelastic damage accumulation under the excessive load. When the damage parameter reaches its critical value inside an element of the mesh, its stiffness matrix is set to zero leading to the redistribution of the stress state in the vicinity of the fractured zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein, 2003 (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-static load. The proposed finite element model leads to more realistic and precise results concerning the shape of the force-displacement curve (yielding and fracturing) and the profile of the fractured edge.

Review on Methods of Hydro-Mechanical Coupled Modeling for Long-term Evolution of the Natural Barriers

  • Chae-Soon Choi;Yong-Ki Lee;Sehyeok Park;Kyung-Woo Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.429-453
    • /
    • 2022
  • Numerical modeling and scenario composition are needed to characterize the geological environment of the disposal site and analyze the long-term evolution of natural barriers. In this study, processes and features of the hydro-mechanical behavior of natural barriers were categorized and represented using the interrelation matrix proposed by SKB and Posiva. A hydro-mechanical coupled model was evaluated for analyzing stress field changes and fracture zone re-activation. The processes corresponding to long-term evolution and the hydro-mechanical mechanisms that may accompany critical processes were identified. Consequently, practical numerical methods could be considered for these geological engineering issues. A case study using a numerical method for the stability analysis of an underground disposal system was performed. Critical stress distribution regime problems were analyzed numerically by considering the strata's movement. Another case focused on the equivalent continuum domain composition under the upscaling process in fractured rocks. Numerical methods and case studies were reviewed, confirming that an appropriate and optimized modeling technique is essential for studying the stress state and geological history of the Korean Peninsula. Considering the environments of potential disposal sites in Korea, selecting the optimal application method that effectively simulates fractured rocks should be prioritized.

A Study on the Fatigue-Fractured Surface of Normalized SS41 Steel and M.E.F. Dual Phase Steel by an X-ray Diffraction Technique (X-선 회절에 의한 SS41 불림재와 M.E.F. 복합 조직강의 피로 파단면 해석에 관한 연구)

  • Oh, Sae-Wook;Park, Young-Chul;Park, Soo-Young;Kim, Deug-Jin;Hue, Sun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.10-18
    • /
    • 1996
  • This study verified the relationship between fracture mechanics parameters and X-ray parameters for normalized SS41 steel with homogeneous crystal structure and M.E.F. dual phase steel(martensite encapsulated islands of ferrite). The fatigue crack propagation test were carried out and X-ray diffraction technique was applied to fatigue fractured surface. The change in X-ray parameters(residual stress, half-value breadth) according to the depth of fatigue fractured surface were investigated. The depth of maximum plastic zone, $w_y$, were determined on the basis of the distribution of the half-value breadth for normalized SS41 steel and that of the residual stress for M.E.F. dual phase steel. $K_{max}$ could be estimated by the measurement of $w_y$.

  • PDF

Groundwater Flow Modeling in a Block-Scale Fractured Rocks considering the Fractured Zones (단열대의 영향을 고려한 블록 규모 단열 암반에서의 지하수 유동 모의)

  • Ko, Nak-Youl;Ji, Sung-Hoon;Koh, Yong-Kwon;Choi, Jon-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.159-166
    • /
    • 2010
  • The block-scale groundwater flow system at Olkiluoto site in Finland was simulated. The heterogeneous and anisotropic hydraulic conductivity field for the domain was constructed from the discrete fracture network, which considered only the fractured zones identified in the deep boreholes installed in the study site. The groundwater flow model was calibrated by adjusting the recharge rate and the transmissivities of the fractured zones to fit the calculated hydraulic heads and into- and out-flow rates in the observation intervals of the boreholes with the observed ones. In the calibrated model, the calculated flow rates at some intervals were not in accordance with the observed ones although the calculated hydraulic heads fit well with the observed ones, which revealed that the number of the conduits for groundwater flow is insufficient in the conceptual model for groundwater flow modeling. Therefore, it was recommended that the potential local conduits such as background fractures should be added to the present conceptual model.

Laboratory study on the electrical resistivity characteristics using an artificial agar specimen with clay minerals (점토광물을 함유하는 한천인공시료를 이용한 전기비저항 특성에 관한 실험적 연구)

  • Park, Mi-Kyung;Park, Sam-Gyu;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.65-70
    • /
    • 2005
  • A low resistivity zone is found in many places such as a fractured fault zone, weathered zone and aquifer. The electrical resistivity is influenced mainly by pore fluid as well as the clay mineral types and contents, Hence, it is very important to understand the relationship between the electrical resistivity and clay contents associated with the low resistivity zone for geotechnical applications such as civil engineering. This study examines the characteristics of clay mineral types and contents to electrical resistivity through sample measurements, and proposes an expression relating the resistivity and clay content. The electrical resistivity is measured for an artificial agar specimen with clay minerals instead of a natural rock. The clay minerals used are Kaolinite and Montmorillonite. Montmorillonite shows remarkably lower resistivity than Kaolinite, although its clay content is fewer than that of Kaolinite. Also, the proposed expression shows a good correlation coefficient as high as 0.89 or more in all clay minerals.

  • PDF

Development of Methodology for Fracture Network Analysis in the Unsaturated Zone using MINC Approach in TOUGH2 Code (TOUGH2 전산코드의 MINC 기법을 이용한 불포화 암반 내 단열 해석 방법론 개발)

  • Ha, Jaechul;Cheong, Jae-yeol;Kim, Soogin;Yoon, Jeonghyoun
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • The second phase of low- and intermediate-level waste (LILW) disposal facility is under planned on the sedimentary rock in unsaturated zone. In this study, we created two meshes which were a matrix continuum mesh and a fracture continuum mesh to carry out 2 dimensional numerical modeling for groundwater flow in the unsaturated zone containing fractures focused on the second phase of LILW disposal facility. Two continuum meshes were developed using MINC in meshmaker module of TOUGH2 code. A fracture continuum mesh was included the k-field distribution of the permeability derived from the Discrete Fractured Network (DFN) modeling. To apply the unsaturated zone for the modeling, the gridding steps to generate mesh were developed. Each step to generate a mesh consisted of definition of materials, setting the initial conditions and creating grids using MINC. The methodology development of meshes in this study will be applied for more precise modeling of groundwater flow and mass transport.