• Title/Summary/Keyword: fracture tests

Search Result 1,292, Processing Time 0.024 seconds

A study on the estimation of fracture toughness of granite by acoustic emission (미소 파괴음 빈도 측정에 의한 화강암의 파괴인성 평가에 관한 연구)

  • 신재근;이상은;임한욱
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.227-236
    • /
    • 2000
  • The fracture toughness can be measured by the two testing methods using chevron-notched specimen according to the ISRM Working Group of Commission of Testing Methods. They are chevron bend (CB) test and short rod (SR) test. In this study, the suggested methods (Level I tests) were conducted on the CB and SR specimens of Chuncheon granite. In addition. the J-integral analysis was combined with an acoustic emission technique to determine the fracture toughness. The results from two telling methods were analyzed in terms of the anisotropy and the acoustic emission characteristics.

  • PDF

Analysis of Fracture Mechanics Parameter and Fracture Surface in Bonded Ceramic Joints (세라믹 접합부재에 대한 파괴역학인자 및 파면 해석)

  • 김기성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.156-163
    • /
    • 1997
  • Recently, attempts have been made to be join ceramics to metals in order to make up for the brittleness of ceramics. The difference in the coefficients of linear expansion of the two materials joined at high temperature will cause residual stress, which has a strong influence on the strength of the bonded joints. In this paper, the residual stress distribution and stress intensity factors of the ceramic/metal bonded joints were analyzed by 2-dimensional elastic boundary element method. Fracture toughness tests of ceramic/metal bonded joints with an interface crack were carried out. So the advanced method of quantitative strength evaluation for ceramic/metal bonded joints is to be suggested. Fracture surface and crack propagation path were observed using scanning electron microscope.

  • PDF

A Study on the Fracture Safety of Glass Fiber Reinforced Plastic Pipes (유리섬유 보강 플라스틱관의 파괴 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.121-126
    • /
    • 1994
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety as structural materials of GFRP(Glass Fiber Reinforced Plastics) which we wifely used in the developed countries becauses of their natural of anticorrosion and lightweight etc.. In the fracture test, the mid-span displacement, the strain and the yield load of the GFRP pipes are measured for different number of laminates, and fracture energy is estimated. From this study, it is known that GFRP pipe could be used as structural materials in underground buried pipes if their ductility and strength are increased by controlling number of laminates. Furthermore, because of their merit of lightweight, they can contribute greatly to reduction of construe-tlon cost when they are employed.

  • PDF

Evaluation of the Ductile-Brittle Transition Behavior of fracture Toughness by Material Degradation (열화에 따른 파괴인성치의 연성-취성 천이거동 평가)

  • 석창성;김형익;김상필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.140-147
    • /
    • 2003
  • As the huge energy transfer systems like as nuclear power plant and steam power plant are operated for a long time at a high temperature, mechanical properties are changed and ductile-brittle transition temperature is raised by degradation. So it is required to estimate degradation in order to assess the safety, remaining life and further operation parameters. The sub-sized specimen test method using surveillance specimen was developed for evaluating the integrity of metallic components. In this study, we would like to present the evaluation technique of the ductile-brittle transition temperature by the sub-sized specimen test. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. The tensile test and fracture toughness test were performed. The results of the fracture toughness tests using the sub-sized specimens were compared with the evaluation technique of the ductile-brittle transition temperature.

Rigid-Plastic Finite Element Analysis of Burr Formation at the Exit Stage in Orthogonal Cutting (2차원 절삭에서 공구이탈시 발생하는 버에 관한 강소성 유한요소해석)

  • 고대철;김병민;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 1998
  • The objective of this study is to propose a new approach for modelling of burr formation process during orthogonal cutting when the tool exits the workpiece. This approach is based on the rigid-plastic finite element method combined with the ductile fracture criterion and the element kill method. This approach is applied to orthogonal cutting process to predict the fracture location and the fracture angle as well as the cutting force. To validate this approach, orthogonal cutting tests inside SEM(scanning electron microscope) at very low speed are carried out using A16061-T6 to observe the behavior of the material during the chip and the burr formation. The results of the experiment are compared with those of the finite element simulation.

  • PDF

Fractographic Analysis Method of Fatigue Fracture Surface under Program and Random Loading for Aluminum Alloy (알루미늄 합금의 랜덤하중 하에서 발생한 피로파면 해석 방법)

  • 김상태;최성종;양현태;이희원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2055-2060
    • /
    • 2003
  • Striation is a typical pattern observed on the fatigue fracture surface and the spacing is known to correspond to a macroscopic fatigue crack growth rate, and many models for the predict in the formation of such striation have been proposed. However, these theories and methods can't be applied under random loading spectrum. In this study, the fatigue tests were carried out on aluminum alloy under random loading spectrum. The fatigue fracture surfaces were observed in the scanning electron microscope (SEM) and great quantities of SEM micrographs were synthesized and saved in computer system. The space and morphology of several large-scale striations, which are expected to from at the relatively greater load range in loading block, were observed. The crack length for each loading blocks was decided in consideration of regularity and repetition of those striations. It is shown that the applicability of fractographic methods on the fatigue fracture surface under random loading spectrum.

$CO_2$ Laser Weldability Between Sintered Co, Co+Ni alloy and Carbon Steel (Co/Co+Ni 성분의 분말 소결 금속과 탄소강의 레이저 용접성에 대한 고찰)

  • 박종원;이창희
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.13-24
    • /
    • 2000
  • The weldability of dissimilar materials between sintered materials which are consisted of Co, Co+Ni and carbon steel has been investigated using CO$_2$ laser. Autogeneous CO$_2$ laser welding were run along the butt between two alloys using sets of parameters variation-power and travel speed. In order to study weldability, mechanical tests (bending strength test, microhardness test) and metallurgical analyses (microstructure, phase transformation, fracture mode) were carried out. From the results obtained, it was found that the porosity which exists in a weld metal greatly affects the soundness of the weld. The optimum energy input to have a proper strength over than the requirement by a specification, found to be around 0.3-0.35kJ/m. There are two kinds of fracture mode in the weld metal, depending upon alloy combination, brittle fracture in the case of Co-carbon steel and a ductile fracture in the case of Co+Ni-carbon steel. In general, Co+Ni sintered material showed a better weld properties as compared to the Co sintered material.

  • PDF

On the reinforcement of straw pulp

  • Y. Yu;Kettunen;H. Paulapuro
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.232-238
    • /
    • 1999
  • The reinforcement of wheat straw pulp sheets with softwood kraft was studied, with special emphasis on the impact of softwood kraft beating and the proportion softwood kraft in straw pulp. the reinforcement was evaluated by measuring the tensile stiffness sand in-plane fracture behavior of samples. the results were compared with a mechanical pulp (TMP) and with a hardwood birch kraft, both reinforced with the same softwood kraft. Wheat straw pulp forms strong interfiber bonds. Therefore, its tensile stiffness and tensile strength are larger than TMP used. In-plane tear tests showed that a pure wheat straw pulp sheet has low fracture energy and correspondingly a narrow fracture process zone. The fracture energy of the reinforced straw sheets was found to increase linearly with the proportion of both unbeaten and beaten softwood pulps.

Fracture behavior using AE method and reliability assessment of CFRP based on absorbed moisture (흡습된 CFRP의 AE에 의한 파과거동과 신뢰성 평가)

  • 남기우;김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.38-50
    • /
    • 1996
  • Recently carbon fiber reinforced plastic (CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and pipes. However, mechanical properties of such materials may be change when CFRP and exposed to corrosive environment for long periods of time. The degradation behavior of carbon fiber/epoxy resin composite material in distilled water is investigated using acoustic emission (AE) technique, Fracture toughness tests are performed on the compact tension specimens that are pilled by two types of $[O_2/9O_2]_{3s}$ and $[O/9O]_6s$. During the testes, AE test was carried out to monitor the damage of CFRP by moisture absorption. The data was treated by 2-parameter Weibull distribution and the fracture surface was observed by scanning electron microscope.

  • PDF

Simulation of Extremely Low Cycle Fatigue Fracture in Ductile Cast Iron (구상흑연주철 극저사이클 피로파괴의 시뮬레이션 구현)

  • Kim, Min-Gun;Lim, Bok-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1573-1580
    • /
    • 2006
  • In this study, fatigue tests were carried out under push-pull loading condition using spheroidal graphite cast iron in order to clarify the internal fatigue fracture mechanism in an extremely low cycle fatigue regime. It is found that a successive observation of internal fatigue damage it is found that the fracture processes go through three stages, that is, the generation, growth and coalescence of microvoids originated from debonding of graphite-matrix interface. It is also found that the crack which is initiated from the void propagates by coalescence of neighboring cracks and the fatigue crack growth rate can be expressed in form of the Manson-Coffin rule type. In this paper, quantitative analyses of fatigue properties for realization of simulation about fatigue life evaluation are also presented.