• Title/Summary/Keyword: fracture repair

검색결과 254건 처리시간 0.02초

정면충돌 시 차량 탑승자의 하지 손상기전에 대한 분석 (Analysis of Lower Extremity Injury Mechanism Centered on Frontal Collision in Occupant Motor Vehicle Crashes)

  • 이희영;이정훈;전혁진;김호중;김상철;윤영한;이강현
    • 자동차안전학회지
    • /
    • 제10권4호
    • /
    • pp.7-12
    • /
    • 2018
  • Injury mechanisms of lower extremity injuries in motor vehicle accidents are focused on fractures, sprains, and contusions. The purpose of this study is to evaluate the analysis of lower extremity injury mechanism in occupant motor vehicle accident by using Hospital Information System (HIS) and reconstruction program, based on the materials related to motor vehicle accidents. Among patients who visited the emergency department of Wonju Severance Christian Hospital due to motor vehicle accidents from August 2012 to February 2014, we collected data on patients with agreement for taking the damaged vehicle's photos. After obtaining the verbal consent from the patient, we asked about the cause of the accident, information on vehicle involved in the accident, and the location of car repair shop. The photos of the damaged vehicle were taken on the basis of front, rear, left side and right side. Damage to the vehicle was presented using the CDC code by analytical study of photo-images of the damaged vehicle, and a trauma score was used for medical examination of the severity of the patient's injury. Among the 1,699 patients due to motor vehicle crashes, 88 (5.2%) received a diagnosis of lower extremity fracture and 141 (8.3%) were the severe who had ISS over 15. Nevertheless during 19 months for research, it was difficult to build up in-depth database about motor vehicle crashes. It has a limitation on collecting data because not only the system for constructing database about motor vehicle crash is not organized but also the process for demanding materials is not available due to prevention of personal information. For accurate analysis of the relationship between occupant injury and vehicle damage in motor vehicle crashes, build-up of an in-depth database through carrying out various policies for motor vehicle crashes is necessary for sure.

대구경 상수도관 부식 손상부의 고분자 필러와 복합슬리브 성능 평가 (Performance assessment of polymeric filler and composite sleeve technique for corrosion damage on large-diameter water pipes)

  • 이호민;박정수;박정주;배철호
    • 상하수도학회지
    • /
    • 제37권4호
    • /
    • pp.203-214
    • /
    • 2023
  • In this study, the physical properties and fracture characteristics according to the tensile load are evaluated on the materials of the polymeric filler and carbon fiber-based composite sleeve technique. The polymeric filler and the composite sleeve technique are applied to areas where the pipe body thickness is reduced due to corrosion in large-diameter water pipes. First, the tensile strength of the polymeric filler was 161.48~240.43 kgf/cm2, and the tensile strength of the polyurea polymeric filler was relatively higher than that of the epoxy. However, the tensile strength of the polymeric filler is relatively very low compared to ductile cast iron pipes(4,300 kgf/cm2<) or steel pipes(4,100 kgf/cm2). Second, the tensile strength of glass fiber, which is mainly used in composite sleeves, is 3,887.0 kgf/cm2, and that of carbon fiber is up to 5,922.5 kgf/cm2. The tensile strengths of glass and carbon fiber are higher than ductile cast iron pipe or steel pipe. Third, when reinforcing the hemispherical simulated corrosion shape of the ductile cast iron pipe and the steel pipe with a polymeric filler, there was an effect of increasing the ultimate tensile load by 1.04 to 1.06 times, but the ultimate load was 37.7 to 53.7% compared to the ductile cast iron or steel specimen without corrosion damage. It was found that the effect on the reinforcement of the corrosion damaged part was insignificant. Fourth, the composite sleeve using carbon fiber showed an ultimate load of 1.10(0.61T, 1,821.0 kgf) and 1.02(0.60T, 2,290.7 kgf) times higher than the ductile cast iron pipe(1,657.83 kgf) and steel pipe(2,236.8 kgf), respectively. When using a composite sleeve such as fiber, the corrosion damage part of large-diameter water pipes can be reinforced with same level as the original pipe, and the supply stability can be secured through accident prevention.

배양된 인간 골막기원세포의 조골세포 분화과정에서 골기질 형성정도와 혈관내피세포성장인자 신호와의 상관관계 (CORRELATION BETWEEN VASCULAR ENDOTHELIAL GRWOTH FACTOR SIGNALING AND MINERALIZATION DURING OSTEOBLASTIC DIFFERENTIATION OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS)

  • 박봉욱;변준호;류영모;하영술;김덕룡;조영철;성일용;김종렬
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권3호
    • /
    • pp.197-205
    • /
    • 2007
  • Angiogenesis is a essential part for bone formation and bone fracture healing. Vascular endothelial growth factor (VEGF), one of the most important molecules among many angiogenic factors, is a specific mitogen for vascular endothelial cells. VEGF-mediated angiogenesis is required for bone formation and repair. However, the effect of VEGF on osteoblastic cells during osteogenesis is still controversial. In recent days, substantial progress have been made toward developing tissue-engineered alternatives to autologous bone grafting for maxillofacial bony defects. Periosteum has received considerable interest as a better source of adult stem cells. Periosteum has the advantage of easy harvest and contains various cell types and progenitor cells that are able to differentiate into a several mesenchymal lineages, including bone. Several studies have reported the bone formation potential of periosteal cells, however, the correlation between VEGF signaling and cultured human periosteal cell-derived osteogenesis has not been fully investigated yet. The purpose of this study was to examine the correlation between VEGF signaling and cultured human periosteal-derived cells osteogenesis. Periosteal tissues of $5\;{\times}\;20\;mm$ were obtained from mandible during surgical extraction of lower impacted third molar from 3 patients. Periosteal-derived cells were introduced into the cell culture and were subcultured once they reached confluence. After passage 3, the periosteal-derived cells were further cultured for 42 days in an osteogenic inductive culture medium containing dexamethasone, ascorbic acid, and ${\beta}-glycerophosphate$. We evaluated the alkaline phosphatase (ALP) activity, the expression of Runx2 and VEGF, alizarin red S staining, and the quantification of osteocalcin and VEGF secretion in the periosteal-derived cells. The ALP activity increased rapidly up to day 14, followed by decrease in activity to day 35. Runx2 was expressed strongly at day 7, followed by decreased expression at day 14, and its expression was not observed thereafter. Both VEGF 165 and VEGF 121 were expressed strongly at day 35 and 42 of culture, particularly during the later stages of differentiation. Alizarin red S-positive nodules were first observed on day 14 and then increased in number during the entire culture period. Osteocalcin and VEGF were first detected in the culture medium on day 14, and their levels increased thereafter in a time-dependent manner. These results suggest that VEGF secretion from cultured human periosteal-derived cells increases along with mineralization process of the extracellular matrix. The level of VEGF secretion from periosteal-derived cells might depend on the extent of osteoblastic differentiation.

석조문화재 복원을 위한 금속보강재 매입방법 표준화 연구 (A Study on the Guidelines on the Insertion of Metal Stiffeners in the Restoration of Stone Cultural Heritages)

  • 이동식;김현용;김사덕;홍성걸
    • 헤리티지:역사와 과학
    • /
    • 제46권3호
    • /
    • pp.212-228
    • /
    • 2013
  • 파손된 석조문화재를 재사용하기 위한 방법으로 금속보강재를 사용하게 되는데 현재까지 보강재에 대한 보존처리 지침 없이 처리자의 경험에 의해서 이루어지다 보니 여러 가지 문제점이 도출되고 있다. 따라서 2차적인 원부재의 훼손을 최소화하기 위한 금속봉의 구조적 보강방법과 거동 특성 등을 제안된 실험체를 통해 검증 받아 금속보강재 매입방법에 관한 설계기준을 마련하고자 하였다. 절단면에 에폭시수지 접합만 할 경우 원 모재 물성의 70% 정도밖에 회복되지 않아 30%에 대한 금속보강재의 구조적 보강이 필요하다. 금속봉은 석재 취성파괴 후 구조적 거동을 받는데 금속보강재비가 0.251% 이하로 설계되면 구조적 거동은 발생하지 않으며, 0.5% 이상이면 구조적 보강은 이루어지나 모재의 2차 훼손을 유발시킨다. 따라서 $1,500kgf/cm^2$ 강도를 갖는 석재의 적정 금속보강재비는 접착단면적의 0.283~0.377% 정도로 설계되어야 가역성 있는 파손과 보강재의 연성거동이 이루어진다. 또한 휨 하중에 대응되는 금속봉의 최대 응력을 기대하기 위해서는 보강재 간격을 멀리하는 것보다 가깝게 유지하는 것이 효율적이며, 특히 상부에 보강재를 매입하는 것은 구조적으로 아무런 도움이 되지 못하고 오히려 원부재의 손상만 유발한다. 따라서 보강재는 하부에 집중배치하고 일부 중앙부에 매입하여야 안정적인 인장재 역할을 하면서 하중응력을 받는다. 금속봉의 분산효과는 보강봉의 면적에 영향을 받을 뿐 지름과는 무관하였다. 하지만 큰 규모를 대상으로 할 때는 접착 단면을 고려하여 보강재 개수를 늘려주는 것이 하중응력에 안정적이다. 이때 적용되는 정착길이는 보강재의 직경에 따라 다음과 같은 식($l_d=a_tf_y/u{\Sigma}_0$)에 의거하여 설계한다. 또한 구조재로서 거동을 하기 위해서는 반드시 마디가 있는 전산형 보강봉을 사용하여야 한다.