• Title/Summary/Keyword: fracture pressure

Search Result 891, Processing Time 0.033 seconds

The Effectiveness of Osteoplasty System (Vertebroplasty using Large Cannula-low Pressure Delivery System) in Compression Fracture and other Spinal Pathology

  • Kang, Jeong-Han;Kuh, Sung-Uk;Shin, Zun-Zae;Cho, Yong-Eun;Yoon, Young-Sul;Chin, Dong-Kyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.4
    • /
    • pp.259-264
    • /
    • 2005
  • Objective : The vertebroplasty is an excellent procedure in spine compression fracture, but there are some problems such as cement leakage and difficulties in bone biopsy. Recently, the osteoplasty system is developed to solve these problems, so we will report the usefulness of the osteoplasty system. Methods : From January 2003 to November 2003, there are 9patients with simple osteoporotic spine compression fracture, 2 compression fracture patients combined with suspicious spinal metastasis, 1patient with suspicious primary bone tumor, and 2patient with infection on spine. All patients were treated using the osteoplasty system. Results : All 11 compression fracture patients were relived the back pain after the osteoplasty and there is no complication. The bone biopsies in 3 suspicious cancer patients were also effectively performed using the osteoplasty system; negative result in 2patients and positive result in 1patient. The culture result of spontaneous discitis was no growth for 48hours. The spine tuberculosis was confirm using the osteoplasty system. Conclusion : The osteoplasty system has distinguished advantages in comparison with the vertebroplasty. That is, the risk of cement leakage is lower than vertebroplasty because of low pressure delivery system. And we can obtain the specimen effectively in bone biopsy because of large cannula. In conclusion, we emphasize that the osteoplasty system is a more useful procedure in spine compression fracture especially in the patient needed bone biopsy for diagnosis.

Investigation on Effects of Residual Stresses and Charpy V-Notch Impact Energy on Brittle Fractures of the Butt Weld between Close Check Valve and Piping, and of the Valve Body in Nuclear Power Plants (원전 역지 밸브/배관 맞대기 용접부와 밸브 몸체의 취성 파괴에 미치는 잔류응력 및 Charpy V-노치 충격에너지의 영향 고찰)

  • Kim, Jong-Sung;Kim, Hyun-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.69-73
    • /
    • 2015
  • The study investigated effects of residual stresses and Charpy impact energy on brittle fractures of the butt weld between the valve and the piping, and of the valve body in nuclear power plants via a linear elastic fracture mechanics approach in the ASME B&PV Code, Sec.XI and finite element analysis. Weld residual stress in a butt weld between close check valve and piping, and residual stress in the valve due to casting process were assumed to be proportional to yield strength of base metal. Operating stresses in the butt weld and the valve body were calculated using approximate engineering formulae and finite element analysis, respectively. Applied stress intensity factors were calculated by assuming postulated cracks with specific sizes and then by substituting the residual stresses and the operating stresses into engineering formulae presented in the ASME B&PV Code, Sec.III. Plane strain fracture toughness was derived by using a correlation between Charpy V-notch impact energy and fracture toughness. Structural integrity of the weld and the body against brittle fracture was assessed by using the applied stress intensity factors, plane strain fracture toughness and the linear elastic fracture mechanics approach. As a result, it was identified that the structural integrity was maintained with decreasing the residual stress levels and increasing the Charpy V-notch impact energy.

A Study on the Microscopic Fracture Characteristics of A533B-1 Nuclear Pressure Vessel Steels (A533B-1 원자로 압력용기 강의 미시적 파괴특성에 관한 연구)

  • Jang, Chang-Heui;Kim, In-Sup;Park, Soon-Pil
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.165-170
    • /
    • 1989
  • The strain rate effects on fracture toughness and fracture resistance characteristics of A533B-1 nuclear pressure vessel steels were examined in the quasi-dynamic test conditions through the microscopic investigation of the intense strain region around crack tip and the microroughness of fracture surface. J-value calculated from the recrystallization etch technique was the same as calculated from the modified-J when the crack extension is less than 1.5mm in a 1/2T-CT specimen. Local fracture strain was calculated from the fracture surface micro-roughness. The local strains were calculated to be the values of 1.8 and 2.0 and were much higher than the macroscopically measured values. It was nearly independent on strain rate and was regarded as a material constant in ductile dimpled rupture. The fracture toughness increased with increase in strain rate while the tearing modulus showed little variation.

  • PDF

Effects of Ni and Cr Contents on the Fracture Toughness of Ni-Mo-Cr Low Alloy Steels in the Transition Temperature Region (Ni-Mo-Cr계 저합금강의 천이온도영역에서의 파괴인성에 미치는 Ni 및 Cr 함량의 영향)

  • Lee, Ki-Hyoung;Park, Sang-Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.533-541
    • /
    • 2009
  • Materials used for a reactor pressure vessel(RPV) are required high strength and toughness, which determine the safety margin and life of a reactor. Ni-Mo-Cr low alloy steel shows better mechanical properties than existing RPV steels due to higher Ni and Cr contents compared to the existing RPV steels. The present study focuses on effects of Ni, Cr contents on the cleavage fracture toughness of Ni-Mo-Cr low alloy steels in the transition temperature region. The fracture toughness was characterized by a 3-point bend test of precracked Charpy V-notch(PCVN) specimens based on ASTM E1921-08. The test results indicated that the fracture toughness was considerably improved with an increase of Ni and Cr contents. Especially, control of Cr content was more effective in improving fracture toughness than manipulating Ni content, though Charpy impact toughness was changed more extensively by adjusting Ni content. These differences between changes in the fracture toughness and that in the impact toughness were derived from microstructural features, such as martensite lath size and carbide precipitation behavior.

Application of rock mass index in the prediction of mine water inrush and grouting quantity

  • Zhao, Jinhai;Liu, Qi;Jiang, Changbao;Defeng, Wang
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.503-515
    • /
    • 2022
  • The permeability coefficient is an essential parameter for the study of seepage flow in fractured rock mass. This paper discusses the feasibility and application value of using readily available RQD (rock quality index) data to estimate mine water inflow and grouting quantity. Firstly, the influence of different fracture frequencies on permeability in a unit area was explored by combining numerical simulation and experiment, and the relationship between fracture frequencies and pressure and flow velocity at the monitoring point in fractured rock mass was obtained. Then, the stochastic function generation program was used to establish the flow analysis model in fractured rock mass to explore the relationship between flow velocity, pressure and analyze the universal law between fracture frequency and permeability. The concepts of fracture width and connectivity are introduced to modify the permeability calculation formula and grouting formula. Finally, based on the on-site grouting water control example, the rock mass quality index is used to estimate the mine water inflow and the grouting quantity. The results show that it is feasible to estimate the fracture frequency and then calculate the permeability coefficient by RQD. The relationship between fracture frequency and RQD is in accordance with exponential function, and the relationship between structure surface frequency and permeability is also in accordance with exponential function. The calculation results are in good agreement with the field monitoring results, which verifies the rationality of the calculation method. The relationship between the rock mass RQD index and the rock mass permeability established in this paper can be used to invert the mechanical parameters of the rock mass or to judge the permeability and safety of the rock mass by using the mechanical parameters of the rock mass, which is of great significance to the prediction of mine water inflow and the safety evaluation of water inrush disaster management.

Fracture Behavior Evalustion of Pipes with Local Wall Thinning (감육배관의 파괴거동 평가)

  • Ahn, S.H.;Nam, K.W.;Kim, S.J.;Kim, H.S.;Kim, J.H.;Do, J.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.61-66
    • /
    • 2001
  • Fracture behaviors of pipes with local wall thinning is very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe drosion-corrosion damage. However, effect of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, ovalization+cracking, local buckling and local buckling+cracking. Also, maximum load was successfully evaluated.

  • PDF

Test Technique for Performance Verification of Fracture-Type Canister Cover (파열식 발사관 덮개의 성능검증을 위한 시험기법)

  • Chung, Jae-Wook;Shin, Sang-Mok;Bae, Young-Gwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.449-455
    • /
    • 2013
  • When a missile is launched, a fracture-type canister cover should be properly broken by a collision with a missile or inner pressure of a canister. The fracture performance of a canister cover should be evaluated by a test using a real missile; however, it is unrealistic due to high cost and time restriction in a design stage. In this study, a test technique is newly developed to predict fracture performance of a canister cover. The test was design to have same kinetic energy with a real missile test when the cover is collide with a missile. The effectiveness of the suggested test technique was proved by comparing the test result with that of a real missile test.

A study on minimization of fracture surface in fine blanking process using factorial analysis (요인분석법을 이용한 파인 블랭킹 공정의 파단면 최소화에 관한 연구)

  • Lee, Beom-Soon;Kim, Ok-Hwan
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • The Fine Blanking process is an effective precision shearing process that can obtain a smooth cutting surface and high product precision through a single blanking process. It is widely used in various manufacturing fields. However, shearing through this fine blanking process is only intended to minimize burrs, die rolls and fracture surfaces and does not completely remove them. Therefore, it is necessary to study the minimization of burrs, die rolls and fracture surfaces in the fine blanking process. In this study, a study was conducted on the relationship between the fracture surface and process conditions that occurred during product production using the fine blanking process. For this purpose, the shape of the V-ring indenter, the distance to the punch, and the pressure force, clearance, shear rate, and physical properties of the material were selected as process and design variables, and the relationship with the fracture surface according to each process and design condition was tested. It was analyzed through the Experimental Design Method.

Optimal Shape Design of Hub Edge Contact Profile in a Press-Fitted Shaft (압입축 접촉압력 최소화를 위한 허브 접촉부 형상 최적화)

  • Choi, Ha-Young;Lee, Dong-Hyung;Kwon, Seok-Jin;Seo, Jeong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.559-564
    • /
    • 2016
  • The objectives of this paper are to develop a finite element analysis model to analyze press-fitted and bending load conditions in a press-fitted assembly, and propose a hub shape optimization method to minimize contact pressure near the shaft contact edge. Numerical asymmetric-axisymmetric finite element models have been developed to predict contact stress on press-fitted shafts. The global optimization method, genetic algorithm, local optimization method, and sequential quadratic programming were applied to a press-fitted assembly to optimize the hub contact edge geometry. The results showed that the maximum contact pressure with the optimized hub shape decreased more than 60 % compared to conventional hubs and the maximum contact stress affecting fatigue life was reduced about 47 %. Hub shape optimization can be useful to increase the load capability of press fits in terms of wear and fatigue behavior.

Fracture Behavior of Pressure Tube Materials Based on Fractography (금속재료의 재료시험법 교과내용 개선을 위한 Fractography 신개념 소개 및 도입에 대한 연구)

  • Oh, Dong-Joon
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.126-134
    • /
    • 2010
  • Material Testing Method subject of Metal Materials, which is one of curriculum of engineering major high school, is not properly updated even though both science and technology are advancing rapidly. Especially, the need of fractographic technique, which can analyze the fracture surface with the advanced testing equipment and technique, is increasing. The importance and the analyzing method of Fractography are proved by the characteristic analysis of pressure tube fracture surface of HWPR. In the future, in order to increase the professional knowledge and their pride of engineering major high school student, these advanced subject should be included in the new crriculum of engineering major high school. This activity to involve the advanced subject should be carried out voluntary by the first line teacher before the responsible body.

  • PDF