• Title/Summary/Keyword: fracture initiation

Search Result 450, Processing Time 0.028 seconds

Direct shear testing of brittle material samples with non-persistent cracks

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Zhu, Zheming
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.927-935
    • /
    • 2018
  • The mechanical behavior of the brittle material samples containing the internal and edge cracks are studied under direct shear tests. It is tried to investigate the effects of stress interactions and stress intensity factors at the tips of the pre-existing cracks on the failure mechanism of the bridge areas within these cracks. The direct shear tests are carried out on more than 30 various modeled samples each containing the internal cracks (S models) and edge cracks (E models). The visual inspection and a low power microscope are used to monitor the failure mechanisms of the tested samples. The cracks initiation, propagation and coalescences are being visualized in each test and the detected failure surfaces are used to study and measure the characteristics of each surface. These investigations show that as the ratio of the crack area to the total shear surface increases the shear failure mode changes to that of the tensile. When the bridge areas are fixed, the bridge areas in between the edge cracks have less strength than those of internal cracks. However, the results of this study show that for the case of internal cracks as the bridge area is increased, the strength of the material within the bridge area is decreased. It has been shown that the failure mechanism and fracture pattern of the samples depend on the bridge areas because as the bridge area decreases the interactions between the crack tip stress fields increases.

Injury Analysis of a 12-passenger Van Rollover Accident (12인승 밴 전복사고의 상해 분석)

  • Kim, S.C.;Choi, H.Y.;Kim, B.W.;Park, G.J.;An, S.M.;Lee, K.H.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • The fatality of rollover accidents in motor vehicle crashes is high despite their low incidence. Through the investigation of a 12-passenger van rollover accident in which 10 passengers were involved, we intend to analyze the correlation between the severity of the injury and the position of the occupants. We collected accident information from medical records, interviews, photo-images of the damaged van, field surveys, and the results of the Korean New Car Assessment Program (KNCAP). Based on the occupants' position, we classified injury sites and estimated injury severity. Passenger injury severity was evaluated by trauma score calculation. The initiation type of the rollover accident was passenger side 'fall-over' and the Collision Deformation Classification (CDC) code for the damaged van was 00TDZO3. The crash of the van involved 10 passengers, with an average age of $16.3{\pm}4.2years$. Few of the occupants had fastened seat belts at the time of the incident, and there was no airbag installed. One patient sustained severe liver injury and another was diagnosed with a fracture of the right humerus. The most common injuries were at the upper extremities and the neck. The average of Injury Severity Score (ISS) was $4.8{\pm}5.9$, and the average ISS of right-seated, mid-seated and left-seated occupants was $7.5{\pm}9.3$, $1.5{\pm}0.7$, and $3.3{\pm}2.1$ respectively (p>0.05). In the rollover (to-passenger side) accident of occupant unfastened, the average ISS of right-seated occupants (near side) was higher, but there was no statistically significant difference.

Effect of Aging Treatment on the Microstructure and Low Temperature Tensile Properties in 5083 Aluminum Alloy Weldments (5083 Al합금 용접재의 조직 및 저온 인장성질메 미치는 시효처리의 영향)

  • Lee, T.C.;Lee, H.W.;Joo, D.W.;Lee, J.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • The microstructural characteristics and low temperature tensile properties between $25^{\circ}C$ and $-196^{\circ}C$ for as-welded and age hardened specimen by using Al 5083-H321 for base metal, 5083-5356 and 5083-4043 weldments have been investigated. The hardness of 5083-5356 weldment decreases with aging treatment, whereas the weld region of 5083-4043 weldment shows remarkable increase in hardness after aging due to the precipitation of fine Si particle at the grain boundaries and interiors. Low temperature tensile properties of 5083 AI base metal, 5083-5356 and 5083-4043 weldments appear to be the increment of tensile strengths and elongations at the room temperature and $-196^{\circ}C$, while the decrement of tensile properties around $-50^{\circ}C$ is shown. Through the observation of fine serration to fracture in the stress-strain curve and tensile fractography, the increment of localized deformation leading to promote the neck initiation and the increment of the dimple size cause to decrease in tensile strengths and elongations around $-50^{\circ}C$. For the tensile specimen of the 5083 base metal, 5083-5356 and 5083-4043 weldments, the reason to increase in elongation after solution and aging treatment is the diminishment of fine pit, the resolution of Mg into the matrix and the spheridization of the eutectic Si.

  • PDF

Investigation of the Thermo-mechanical Crack Initiation of the Gas Turbine Casing Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 케이싱 열피로 균열발생 해석)

  • Kang, M.S.;Yun, W.N.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.52-58
    • /
    • 2009
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Many casing bolts are used to assemble two horizontally separated casings, the gas turbine casing and the compressor casing, in both of axial and vertical directions. Because drilled holes for casing bolts in vertical direction are often too close to drilled holes for casing bolts in axial direction, one can observe cracks in the area frequently during operations of a gas turbine. In this study of the root cause analysis for the cracking initiating from the drilled holes of the casings of a gas turbine, the finite element analysis(FEA) was applied to evaluate the thermal and mechanical characteristics of the casings. By applying the field operation data recorded from combined cycle power plants for FEA, thermal and thermo-mechanical characteristics of a gas turbine are analyzed. The crack is initiated at the geometrical weak point, but it is found that the maximum stress is relieved when the same type of cracks is introduced on purpose during FEA. So, it is verified that the local fracture could be delayed by machining the same type of defects near the hole for casing flange bolts of the gas turbine, where the crack is initiated.

  • PDF

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.296-303
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore for its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled fissures under uniaxial compression

  • Tian, Wen-Ling;Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.541-560
    • /
    • 2017
  • In this research, experimental and numerical simulations were adopted to investigate the effects of ligament angle on compressive strength and failure mode of rock-like material specimens containing two non-coplanar filled fissures under uniaxial compression. The experimental results show that with the increase of ligament angle, the compressive strength decreases to a nadir at the ligament angle of $60^{\circ}$, before increasing to the maximum at the ligament angle of $120^{\circ}$, while the elastic modulus is not obviously related to the ligament angle. The shear coalescence type easily occurred when ${\alpha}$ < ${\beta}$, although having the same degree difference between the angle of ligament and fissure. Numerical simulations using $PFC^{2D}$ were performed for flawed specimens under uniaxial compression, and the results are in good consistency with the experimental results. By analyzing the crack evolution process and parallel bond force field of rock-like material specimen containing two non-coplanar filled fissures, we can conclude that the coalescence and propagation of crack are mainly derived from parallel bond force, and the crack initiation and propagation also affect the distribution of parallel bond force. Finally, the displacement vectors in ligament region were used to identify the type of coalescence, and the results coincided with that obtained by analyzing parallel bond force field. These experimental and numerical results are expected to improve the understanding of the mechanism of flawed rock engineering structures.

A study on fatigue properties of plasma carburized low carbon Cr-Mo steel (플라즈마 침탄한 저탄소 Cr-Mo강의 피로특성에 관한 연구)

  • Park, Kyeong-Bong;Sin, Dong-Myung;Lee, Chang-Youl;Lee, Ktung-Sub
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.505-514
    • /
    • 2000
  • The carburizing behavior and fatigue properties of the plasma carburized low carbon Cr-Mo steel(0.176C-1.014Cr-0.387Mo) have been investigated. The effective case depth in plasma carburized steel increased up to 50% in comparison with that of gas carburizing, and this case depth increased with the increasing surface carbon content. With increasing time in plasma carburizing, the surface carbon content increased but its increasing rate decreased. Fatigue properties were studied in terms of microstructure, case depth, retained austenite and residual stress near the surface. The fatigue limit of the plasma carburized steel was higher than that of gas carburized one. The initiation of microcracks and initial crack propagation were retarded due to a relatively little surface and internal oxidation layer in plasma carburized steel. Fractography showed the crack initiated at the surface, and transgranular fracture at surface layer was more predominant in plasma carburized steel compared to that of gas carburized steel.

  • PDF

An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission (음향방출기법을 이용한 KURT 화강암의 균열 발생 특성에 관한 실험적 연구)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Jong-Won;Lee, Chang-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • The first step in improving our understanding of uncertainties suclt as rock mass strength parameters and deformation modulus in rock masses around high-level radioactive waste disposal repositories, for improved safety, is to study the process of crack development in intact rock. Therefore, in this study, the fracture process and crack development were examined in samples of KURT granite taken from the KAERI Underground Research Tunnel (KURT), based on acoustic emission (AE) and moment tensor analysis. The results show that crack initiation, coalescence, and unstable crack occurred at rock uniaxial compressive strengths of 0.45, 0.73, and 0.84, respectively. In addition, moment tensor analysis indicated that during the early stage of loading, tensile cracks were predominant. With increasing applied stress, the number of shear cracks gradually increased. When the applied stress exceeded the stress level required for crack damage, unstable shear cracks which directly result in failure of the rock were generated along the failure plane.

Peridynamic Modeling for Crack Propagation Analysis of Materials (페리다이나믹 이론 모델을 이용한 재료의 균열 진전 해석)

  • Chung, Won-Jun;Oterkus, Erkan;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • In this paper, the computer simulations are carried out by using the peridynamic theory model with various conditions including quasi-static loads, dynamic loads and crack propagation, branching crack pattern and isotropic materials, orthotropic materials. Three examples, a plate with a hole under quasi-static loading, a plate with a pre-existing crack under dynamic loading and a lamina with a pre-existing crack under quasi-static loading are analyzed by computational simulations. In order to simulate the quasi-static load, an adaptive dynamic relaxation technique is used. In the orthotropic material analysis, a homogenization method is used considering the strain energy density ratio between the classical continuum mechanics and the peridynamic. As a result, crack propagation and branching cracks are observed successfully and the direction and initiation of the crack are also captured within the peridynamic modeling. In case of applying peridynamic used homogenization method to a relatively complicated orthotropic material, it is also verified by comparing with experimental results.

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.350-352
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore fur its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

  • PDF