• Title/Summary/Keyword: fracture initiation

Search Result 450, Processing Time 0.037 seconds

A study on the fatigue life and the change of the strain during the fatigue fracture on the fillet welded specimens of SM490A (SM490A 재질 필렛 용접시편의 피로수명과 용접부 피로파단시 스트레인 변화 연구)

  • 김재훈;구병춘
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.345-349
    • /
    • 2004
  • This study investigates the fatigue lives of SM490A material(base metal) specimens and fillet weld specimens, which are made same material and weld method for the railway vehicle. These fatigue lives have a difference, the fatigue lives of weld specimen are shorter than those of base metal. We measured the strains on the weld positions of the specimens during the fatigue test for investigation of crack initiation and crack growth. In these result, we could find the information of the crack initiation position on weld bead and the history of crack growth. Also we knew that the fatigue crack initiation cycles and the changes of the strain which were affected the fractured surface roughness and morphology.

Micro Forming with Hydrostatic Pressure -Hydro-Mechanical Role Punching- (정수압을 이용한 미세 성형 -Hydro-Mechanical Hole Punching-)

  • 박훈재;김승수;최태훈;김응주;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.386-390
    • /
    • 2003
  • As a trial of application of hydrostatic pressure in micro fomring, burr-free punching has been conducted by means of hydro-mechanical procedure. Even though it is in beginning stage, result of the hydro-mechanical punching is promising. Hydrostatic pressure helps delay fracture initiation and makes it possible to get clean shearing surface. Without any burr on both side of sheet, smooth holes are archived as intended. To verify the significance of hydro-mechanical punching, conventional punching is performed under similar conditions and relatively larger portion of fracture surface is detected in the punching hole. Despite the quality of sidewall is not good enough, it might be possible to make the hole shaped upright, reduce the roll-over radius and minimize the fracture surface by optimizing process parameters.

  • PDF

Behavior of Fracture Deviation in the Impact Test of Narrow Laser Welds (충격 시험시 발생하는 레이저 용접부의 파괴 이탈 현상)

  • Na, Il;Kim, Jae-Do
    • Proceedings of the KWS Conference
    • /
    • 1993.05a
    • /
    • pp.120-124
    • /
    • 1993
  • The Charpy V impact test on subsize was performed on narrow laser welds of low carbon steel sheets, joined by using a continuous wave 3kW CO$_2$ laser. Under certain conditions, a bimodal fracture behaviour has been experienced in Charpy V impact test of narrow laser beam welds. Deviation of the fracture path from the fusion zone into the base metal was dominated at high test temperature. It can be seen that the deviation always occurred after ductile initiation. If the deviation occurs on a small testing specimen, the same trend would happen on the actual laser welded structure. Fracture will then propagate through the base material even if the weld metal has low toughness.

  • PDF

Development of a Module to Predict Burr Formation Using the Finite Element Method (유한요소법을 이용한 버 형성 예측 모듈의 개발)

  • Go, Dae-Cheol;Go, Seong-Rim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.170-179
    • /
    • 2000
  • The objective of this study is to develop an analytical module for the prediction of burr formation during cutting process using the finite element method. This module is based on the rigid-plastic finite element method, ductile fracture criterion, fracture propagation technique and node separation criterion. The sequence of burr formation from burr initiation through end of burr formation is simulated and investigated by this module. The effect of material properties, such as AL6061-T6, AL2024-T4 and Copper, and cutting condition, such as rake angle and cutting depth, on burr formation is also discussed in this study. To validate this module the analysis results are compared with experimental ones.

  • PDF

A Study on the characteristics of crack propagation in stainless steel wellding zone by AE Method (SUS 강판 용접부의 AE 방법에 의한 피로파괴전파 특성에 대한 연구)

  • 신근하;김용수
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.50-55
    • /
    • 1991
  • It is well known that mechanisms of fracture and crack growth depend upon material characteristics such as fracture toughness, environmental condition, cracd geometry and mechanical properties. It seems to be very important to investihate the effects of the above factors on the behavior of structural components which contain flaws for the detailed evaluation of their intehrity. In this experimental research, fracture behaviors of moterials were investigated by using Acoustic Emission(AE) technique. The fracturing processes of materials were estimated through both the tension specimens. For the detrmlnatlon of yied strength or fracture toughness, the critical applied load at the crack initiation and propagation is thought to be very important. The critical applied load(PQ) was determined through AE signal. The source of AE signal was estimated by fractography analysis. These experimental results may contribute to the safety analyses and the evaluation of strength of structures.

  • PDF

Determination of Dynamic Fractrue Toughness for very Brittle Materials (매우 취성인 재료의 동적 파괴인성치 결정법)

  • 이억섭;한유상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.724-728
    • /
    • 1996
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughness for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracture toughness for very brittle materials because of the small crack initiation load. To evaluate the dynamic fracture toughness of verybrittle materials, it is necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has small Young's modulus, is used for the instrumented Charpyimpact test and a proper testing method is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initation of the very brittle materials.

  • PDF

A Study on the Dynamic Fracture Toughness of Welding Structural Steels by Instrumented Impact Testing (계장화 충격시험법에 의한 구조용강 용접부의 동적 파괴인성에 관한 연구)

  • 김헌주;김경민;윤의박
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.42-51
    • /
    • 1993
  • In this study, investigations were conducted in calculating parameters of elastic-plastic fracture mechanics using single specimen. The validity of these testing methods was judged by the confirmation of multiple specimen method of stop block test. The results were as follows: In order to measure a fracture toughness using the instrumented impact test, two general requirement must be considered; One, setting up proper impact velocity considered the effect of loading and the other, the necessity of low blow test for obtaining true energy by the compliance correction. It was possible to detect a crack initiation point by calculating the compliance changing rate from a load-defection curve. Criterion of a stable crack growth, $T_{mat}$ could be estimated by using key-curve method for a base metal. and combining Kaiser's rebound compliance with Paris-Hutchison's $T_{appl}$ equation for the brittled zone of welding heat affected.at affected.d.

  • PDF

Visualization of Crack Propagation and Fracture Transition in Bulk Metallic Glass using Mechano-Luminescence (압광을 이용한 금속계 비정질 합금의 균열전파 및 파괴전이 현상 가시화 연구)

  • Kim, Ji-Sik
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.303-308
    • /
    • 2011
  • Using a mechano-luminescent(ML) paint, which allows the visualization of fast propagating crack under conventional loading conditions, a catastrophic fracture mechanism associated to crack tip melting and wake bridging in bulk metallic glass, is described in this paper. Fracture occurs in two steps with, first, crack initiation from the mechanically machined sharp notch tip in a rectangular shaped compact tension specimen and melting of its tip due to intense shear deformation within very few deformation bands. Then, the crystalline phase in the glass matrix gradually converts the molten crack into a conventional bridged crack as it propagates.

The Applicatiion of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing (성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석)

  •  
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.74-82
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage, then an intermediate stage has to be added to the process sequence to avoid failure during the ratio. In this study, the optimal process design considering forming limit is performed for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. The LDR and the site of fracture initiation are predicted by means of the fracture criterion. From the results of finite element analysis, the optimal value of drawing ratio is obtained, which contributes to the more uniform distribution of thickness and the smaller values of the ductile fracture in final cup.

Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens

  • Haeri, Hadi
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.605-623
    • /
    • 2015
  • A coupled experimental and numerical study of shear fracture in the edge-notched beam specimens of quasi-brittle materials (concrete-like materials) are carried out using four point bending flexural tests. The crack initiation, propagation and breaking process of beam specimens are experimentally studied by producing the double inclined edge notches with different ligament angles in beams under four point bending. The effects of ligament angles on the shear fracturing path in the bridge areas of the double edge-notched beam specimens are studied. Moreover, the influence of the inclined edge notches on the shear-fracture behavior of double edge-notched beam specimens which represents a practical crack orientation is investigated. The same specimens are numerically simulated by an indirect boundary element method known as displacement discontinuity method. These numerical results are compared with the performed experimental results proving the accuracy and validity of the proposed study.