• Title/Summary/Keyword: fractional-step methods

Search Result 25, Processing Time 0.02 seconds

Comparative Study on Sloshing Impact Flows between PIV and CFD (슬로싱 충격현상 해석을 위한 모형실험과 수치해석 적용에 관한 비교 연구: PIV vs. CFD)

  • Yang, Kyung-Kyu;Kim, Jieung;Kim, Sang-Yeob;Kim, Yonghwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.154-162
    • /
    • 2015
  • In this study, experimental and numerical methods were applied to observe sloshing impact phenomena. A two-dimensional rectangular tank filled with water and air was considered with a specific excitation condition that induced a hydrodynamic impact without an air pocket at the top corner of the tank. High-speed cameras and a pressure measurement system were synchronized, and a particle image velocimetry (PIV) technique was applied to measure the velocity field and corresponding pressure. The experimental condition was implemented in a numerical computation to solve incompressible two-phase flows using a Cartesian-grid method. The discretized solution was obtained using the finite difference and constraint-interpolation-profile (CIP) methods, which adopt a fractional step scheme for coupling the pressure and velocity. The tangent of the hyperbola for interface capturing (THINC) scheme was used with the weighed line interface calculation (WLIC) method to capture the interface between the air and water. The calculated impact pressures and velocity fields were compared with experimental data, and the relationship between the local velocity and pressure was investigated based on the computational results.

Comparative Analysis of Korean Universities' Co-author Credit Allocation Standards on Journal Publications (국내대학의 학술논문 공동연구 기여도 산정 기준 비교 분석)

  • Lee, Hyekyung;Yang, Kiduk
    • Journal of Korean Library and Information Science Society
    • /
    • v.46 no.4
    • /
    • pp.191-205
    • /
    • 2015
  • As the first step in developing the optimal co-authorship allocation method, this study investigated the co-authorship allocation standards of Korean Universities on journal publications. The study compared the standards of 27 Korean universities with Library and Information Science (LIS) departments, and analyzed author rankings generated by applying inflated, fractional, harmonic, and university standard method of co-authorship allocation to 189 Korean LIS faculty publications from 2001 to 2014. The university standards most similar to the standard co-authorship allocation method in bibliometrics(i.e. Vinkler) were those whose co-author credits summed up to 1. However, the university standards differed from Vinkler's in allocating author credits based on primary and secondary author classification instead of allocation based on author ranks. The statistical analysis of author rankings showed that the harmonic method was most similar to the university standards. However, the correlation between the university standards whose co-author credits summed up to greater than 1 and harmonic method was lower. The study results also suggested that middle-level authors are most sensitive to co-authorship allocation methods. However, even the most generous university standards of co-authorship allocation still penalizes collaborative research by reducing each co-authors credit below those of single authors. Follow-up studies will be needed to investigate the optimal method of co-authorship credit allocation.

Non-hydrostatic modeling of nonlinear waves in a circular channel (비정수압 모형을 이용한 원형 수로에서 비선형 파랑의 해석)

  • Choi, Doo-Yong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.335-344
    • /
    • 2011
  • A curvilinear non-hydrostatic free surface model is developed to investigate nonlinear wave interactions in a circular channel. The proposed model solves the unsteady Navier-Stokes equations in a three-dimensional domain with a pressure correction method, which is one of fractional step methods. A hybrid staggered-grid layout in the vertical direction is implemented, which renders relatively simple resulting pressure equation as well as free surface closure. Numerical accuracy with respect to wave nonlinearity is tested against the fifth-order Stokes solution in a two-dimensional numerical wave tank. Numerical applications center on the evolution of nonlinear waves including diffraction and reflection affected by the curvature of side wall in a circular channel comparing with linear waves. Except for a highly nonlinear bichrmatic wave, the model's results are in good agreement with superimposed analytical solution that neglects nonlinear effects. Through the numerical simulation of the highly nonlinear bichramatic wave, the model shows its capability to investigate the evolution of nonlinear wave groups in a circular channel.

Statistical Optimization of Solid Growth-medium for Rapid and Large Screening of Polysaccharides High-yielding Mycelial Cells of Inonotus obliquus (단백다당체 고생산성의 Inonotus obliquus 균주의 신속 개량을 위한 고체 성장배지의 통계적 최적화)

  • Hong, Hyung-Pyo;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.142-154
    • /
    • 2010
  • The protein-bound innerpolysaccharides (IPS) produced by suspended mycelial cultures of Inonotus obliquus have promising potentials as an effective antidiabetic as well as an immunostimulating agents. To enhance IPS production, intensive strain improvement process should be carried out using large amount of UV-mutated protoplasts. During the whole strain-screening process, the stage of solid growth-culture was found to be the most time-requiring step, thus preventing rapid screening of high-yielding producers. In order to reduce the cell growth period in the solid growth-stage, therefore, solid growth-medium was optimized using the statistical methods such as (i) Plackett-Burman and fractional factorial designs (FFD) for selecting positive medium components, and (ii) steepest ascent (SAM) and response surface (RSM) methods for determining optimum concentrations of the selected components. By adopting the medium composition recommended by the SAM experiment, significantly higher growth rate was obtained in the solid growth-cultures, as represented by about 41% larger diameter of the cell growth circle and higher mycelial density. Sequential optimization process performed using the RSM experiments finally recommended the medium composition as follows: glucose 25.61g/L, brown rice 12.53 g/L, soytone peptone 12.53 g/L, $MgSO_4$ 5.53 g/L, and agar 20 g/L. It should be noted that this composition was almost similar to the medium combinations determined by the SAM experiment, demonstrating that the SAM was very helpful in finding out the final optimum concentrations. Through the use of this optimized medium, the period for the solid growth-culture could be successfully reduced to about 8 days from the previous 15~20 days, thus enabling large and mass screening of high producers in a relatively short period.

Synthesis Characteristics of ZnO Powder from Precursors Composed of Nitrate-Citrate Compounds (Nitrate-Citrate 혼합 전구체로부터 ZnO 입자의 합성반응 특성)

  • Yang, Si Woo;Lee, Seung Ho;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.299-304
    • /
    • 2016
  • Characteristics of self-propagating reaction for the preparation of ZnO powder from precursors composed of nitrate and citrate compounds were examined. The ratio of C/N was maintained in range of 0.7~0.8 to initiate the self-propagating reaction between the reducing citrate and oxidizing nitrate groups. The samples were decomposed thermally by using TGA. The sudden decomposition occurred in the range of X > 0.5 in a very short time with a very sharp decrease of mass, indicating that the self-propagating reaction would occur. Friedman, Ozawa-Flynn-Wall and Vyazovkin methods were employed to predict the activation energy, reaction order and frequency factor of the reaction rate in the rate determining step of X < 0.5 range. The activation energy increased with increasing fractional conversion in the range of 46~130 (kJ/min). The reaction order decreased in the range of 2.9~0.9, while the frequency factor increased in the range of 85~278 ($min^{-1}$), respectively, with increasing the rate of temperature increase.