• Title/Summary/Keyword: fractional vibration

Search Result 40, Processing Time 0.02 seconds

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

A Fiber Spool's Vibration Sensitivity Optimization Based on Orthogonal Experimental Design

  • Jing Gao;Linbo Zhang;Dongdong Jiao;Guanjun Xu;Xue Deng;Qi Zang;Honglei Yang;Ruifang Dong;Tao Liu;Shougang Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.45-55
    • /
    • 2024
  • A fiber spool with ultra-low vibration sensitivity has been demonstrated for the ultra-narrow-linewidth fiber-stabilized laser by the multi-object orthogonal experimental design method, which can achieve the optimization object and analysis of influence levels without extensive computation. According to a test of 4 levels and 4 factors, an L16 (44) orthogonal table is established to design orthogonal experiments. The vibration sensitivities along the axial and radial directions and the normalized sums of the vibration sensitivities are determined as single objects and comprehensive objects, respectively. We adopt the range analysis of object values to obtain the influence levels of the four design parameters on the single objects and the comprehensive object. The optimal parameter combinations are determined by both methods of comprehensive balance and evaluation. Based on the corresponding fractional frequency stability of ultra-narrow-linewidth fiber-stabilized lasers, we obtain the final optimal parameter combination A3B1C2D1, which can achieve the fiber spool with vibration sensitivities of 10-12/g magnitude. This work is the first time to use an orthogonal experimental design method to optimize the vibration sensitivities of fiber spools, providing an approach to design the fiber spool with ultra-low vibration sensitivity.

Analysis of the Sound Radiation of Transmission Gearbox Housing and Reduction Design (변속기 케이스에서 발생하는 방사소음 해석 및 저감 설계)

  • Jeong, Seong-Young;Oh, Ha-Yeong;Park, Jun-Hong;Park, Gyung-Jin;Lee, Hyun-Ah;Choi, Joong-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.521-527
    • /
    • 2010
  • This article presents a method to calculate the sound radiation of transmission gearbox housing by using Helmholtz integral. Rayleigh integral is used to verify the method. Half-space radiation is considered because the actual gearbox housing is on hard place like concrete. For optimization, orthogonal array is used as a fractional factorial design method. Sound Radiation is calculated with simple source like plate and sphere shape, then actual gearbox BEM model is applied to the method.

Optimal Layout Design of Frequency- and Temperature-Dependent Viscoelastic Materials for Maximum Loss Factor of Constrained-Layer Damping Beam (점탄성 물질의 온도와 주파수 의존성을 고려한 구속형 제진보의 최대 손실계수 설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1023-1026
    • /
    • 2007
  • Optimal damping layout of the constrained viscoelastic damping layer on beam is identified with temperatures by using a gradient-based numerical search algorithm. An optimal design problem is defined in order to determine the constrained damping layer configuration. A finite element formulation is introduced to model the constrained damping layer beam. The four-parameter fractional derivative model and the Arrhenius shift factor are used to describe dynamic characteristics of viscoelastic material with respect to frequency and temperature. Frequency-dependent complex-valued eigenvalue problems are solved by using a simple resubstitution algorithm in order to obtain the loss factor of each mode and responses of the structure. The results of the numerical example show that the proposed method can reduce frequency responses of beam at peaks only by reconfiguring the layout of constrained damping layer within a limited weight constraint.

  • PDF

Active Noise Transmission Control Through a Panel Structure Using a Frequency Domain Identification Method (주파수 영역 모델 방법을 이용한 평판 구조물의 능동 소음전달 제어)

  • Kim, Yeung-Shik;Kim, In-Soo;Moon, Chan-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.71-81
    • /
    • 2001
  • This paper analyzes the effectiveness of minimizing vibration and sound transmission on/through a thin rectangular plate by both feedback control and hybrid control which combines adaptive feedforward control with a feedback loop. An experimental system identification technique using the matrix-fractional curve-fitting of the frequency response data is introduced for complex shaped structures. This identification technique reduces the model order o the MIMO(Multi-Input Multi-Output) system which simplifies the practical implementation. The adaptive feedforward control uses a Multiple filtered-x LMS(Least Mean Square) algorithm and the feedback control uses a multivariable digital LQG(Linear Quadratic Gaussian) algorithm. Experimental results show that an effective reduction of sound transmission is achieved by the hybrid control scheme when both vibration and noise measurement signals are incorporated in the controller.

  • PDF

Experimental research of dynamic behaviors at viscoelastic damper with change of orifice (점탄성 감쇠기의 간극 변화에 따른 동특성에 대한 실험적 연구)

  • Yun, Jong-Min;Lim, Sang-Hyuk;Park, Hwa-Yong;Kim, Chang-Yeol;Lee, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.744-749
    • /
    • 2011
  • Silicon oil in viscous fluid damper has a viscoelastic feature that show stiffness besides damping. These properties depend on frequency and are non-linear. A lot of research has been conducted in order to identify viscoelastic damper with mathematical model. Fractional Derivative Maxwell Model has been widely used, but this model did not explain the effect of damper size change on the damper performance. In this paper, the experimental study was conducted to validate damper's dynamic behaviors when total damper's size is changed while maintaining same aspect ratio and orifice size.

  • PDF

An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp (텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험)

  • 이재국;김진우;신재철;김명수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.129-137
    • /
    • 2004
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot sports in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.

  • PDF

Design of Experiments for Optimization of Helicopter Flight Tests (헬리콥터 비행시험 최적화를 위한 실험계획법의 적용)

  • Byun, Jai-Hyun;Lee, Gun-Myung;Kim, Se-Hee
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.113-124
    • /
    • 2014
  • In developing an aircraft, configuration determination and requirement proofing depend on flight test results. Since the flight tests require much time and high cost, systematic flight test planning and analysis are needed to reduce cost and development time. This paper presents a desirability function approach to present an integrative measure of vibration levels at important positions and suggests a fractional factorial design which is one of the experimental design methods to help perform systematic flight tests. A method to perform flight tests in stages is also suggested to further reduce the number of flight tests.

A CMOS Interface Circuit for Vibrational Energy Harvesting with MPPT Control (MPPT 제어 기능을 갖는 진동에너지 수확을 위한 CMOS 인터페이스 회로)

  • Yang, Min-Jae;Yoon, Eun-Jung;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2016
  • This paper presents a CMOS interface circuit for vibration energy harvesting with MPPT (Maximum Power Point Tracking). In the proposed system a PMU (Power Management Unit) is employed at the output of a DC-DC boost converter to provide a regulated output with low-cost and simple architecture. In addition an MPPT controller using FOC (Fractional Open Circuit) technique is designed to harvest maximum power from vibration devices and increase efficiency of overall system. The AC signal from vibration devices is converted into a DC signal by an AC-DC converter, and then boosted through the DC-DC boost converter. The boosted signal is converted into a duty-cycled and regulated signal and delivered to loads by the PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a DC-DC boost converter architecture using a schottky diode is employed for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process, and the designed chip occupies $915{\mu}m{\times}895{\mu}m$. Simulation results shows that the maximum power efficiency of the entire system is 83.4%.

Variability Analysis of Dynamic Characteristics in Rubber Engine Mounts Considering Temperature Variation (온도변화를 고려한 고무엔진마운트의 동특성 변동성 해석)

  • Hwang, In Seong;Ahn, Tae Soo;Lee, Dooho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.553-562
    • /
    • 2013
  • Vehicle vibrations arise from engine and road surface excitations. The engine mount system of a passenger car sustains the engine weight and insulates the excitation force from the engine system. The dynamic properties of viscoelastic material used for the vehicle engine mounts have large variation due to environmental factors such as environmental temperature and humidity etc. The present study aims to investigate the variability of dynamic characteristics in rubber engine mounts considering both environmental temperature change and material model errors/uncertainty. The engine mounts for a passenger car were modeled using finite element method. Then, the dynamic stiffness variability of the engine mounts were estimated using Monte Carlo simulation method. In order to estimate the variations in the storage and loss moduli of the viscoelastic materials, the material properties of the synthetic rubber were expressed as a fractional-derivative model. Next, in order to simulate the uncertainty propagation of the dynamic stiffness for the engine mounts due to the storage and loss moduli variations, the Monte Carlo simulation was used. The Monte Carlo simulation results showed large variation of the engine-mount stiffness along frequency axis.