• Title/Summary/Keyword: fractional Bayes factor(FBF)

Search Result 9, Processing Time 0.024 seconds

Computing Fractional Bayes Factor Using the Generalized Savage-Dickey Density Ratio

  • Younshik Chung;Lee, Sangjeen
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.385-396
    • /
    • 1998
  • A computing method of fractional Bayes factor (FBF) for a point null hypothesis is explained. We propose alternative form of FBF that is the product of density ratio and a quantity using the generalized Savage-Dickey density ratio method. When it is difficult to compute the alternative form of FBF analytically, each term of the proposed form can be estimated by MCMC method. Finally, two examples are given.

  • PDF

A Bayesian Criterion for a Multiple test of Two Multivariate Normal Populations

  • Kim Hea-Jung;Son Young Sook
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.147-152
    • /
    • 2000
  • A Bayesian criterion is proposed for a multiple test of two independent multivariate normal populations. For a Bayesian test the fractional Bayes facto.(FBF) of O'Hagan(1995) is used under the assumption of Jeffreys priors, noninformative improper proirs. In this test the FBF without the need of sampling minimal training samples is much simpler to use than the intrinsic Bayes facotr(IBF) of Berger and Pericchi(1996). Finally, a simulation study is performed to show the behaviors of the FBF.

  • PDF

A Multiple Test of a Poisson Mean Parameter Using Default Bayes Factors (디폴트 베이즈인자를 이용한 포아송 평균모수에 대한 다중검정)

  • 김경숙;손영숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.2
    • /
    • pp.118-129
    • /
    • 2002
  • A multiple test of a mean parameter, λ, in the Poisson model is considered using the Bayes factor. Under noninformative improper priors, the intrinsic Bayes factor(IBF) of Berger and Pericchi(1996) and the fractional Bayes factor(FBF) of O'Hagan(1995) called as the default or automatic Bayes factors are used to select one among three models, M$_1$: λ< $λ_0, M$_2$: λ= $λ_0, M$_3$: λ> $λ_0. Posterior probability of each competitive model is computed using the default Bayes factors. Finally, theoretical results are applied to simulated data and real data.

Instrinsic Priors for Testing Two Exponential Means with the Fractional Bayes Factor

  • Kim, Seong W.;Kim, Hyunsoo
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.395-405
    • /
    • 2000
  • This article addresses the Bayesian hypothesis testing for the comparison of two exponential mans. Conventional Bayes factors with improper non-informative priors are into well defined. The fractional Byes factor(FBF) of O'Hagan(1995) is used to overcome such as difficulty. we derive proper intrinsic priors, whose Bayes factors are asymptotically equivalent to the corresponding FBFs. We demonstrate our results with three examples.

  • PDF

A Bayesian Criterion for a Multiple test of Two Multivariate Normal Populations

  • Kim, Hae-Jung;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.97-107
    • /
    • 2001
  • A simultaneous test criterion for multiple hypotheses concerning comparison of two multivariate normal populations is considered by using the so called Bayes factor method. Fully parametric frequentist approach for the test is not available and thus Bayesian criterion is pursued using a Bayes factor that eliminates its arbitrariness problem induced by improper priors. Specifically, the fractional Bayes factor (FBF) by O'Hagan (1995) is used to derive the criterion. Necessary theories involved in the derivation an computation of the criterion are provided. Finally, an illustrative simulation study is given to show the properties of the criterion.

  • PDF

Outlier Detection in Random Effects Model Using Fractional Bayes Factor

  • Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.141-150
    • /
    • 2000
  • In this paper we propose a method of computing Bayes factor to detect an outlier in a random effects model. When no information is available and hence improper noninformative priors should be used Bayes factor includes the unspecified constants and has complicated computational burden. To solve this problem we use the fractional Bayes factor (FBF) of O-Hagan(1995) and the generalized Savage0-Dickey density ratio of Verdinelli and Wasserman (1995) The proposed method is applied to outlier deterction problem We perform a simulation of the proposed approach with a simulated data set including an outlier and also analyze a real data set.

  • PDF

Default Bayesian Method for Detecting the Changes in Sequences of Independent Exponential and Poisson Random Variates

  • Jeong, Su-Youn;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.129-139
    • /
    • 2002
  • Default Bayesian method for detecting the changes in sequences of independent exponential random variates and independent Poisson random variates is considered. Noninformative priors are assumed for all the parameters in both of change models. Default Bayes factors, AIBF, MIBF, FBF, to check whether there is any change or not on each sequence and the posterior probability densities of change at each time point are derived. Theoretical results discussed in this paper are applied to some numerical data.

DEFAULT BAYESIAN INFERENCE OF REGRESSION MODELS WITH ARMA ERRORS UNDER EXACT FULL LIKELIHOODS

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.169-189
    • /
    • 2004
  • Under the assumption of default priors, such as noninformative priors, Bayesian model determination and parameter estimation of regression models with stationary and invertible ARMA errors are developed under exact full likelihoods. The default Bayes factors, the fractional Bayes factor (FBF) of O'Hagan (1995) and the arithmetic intrinsic Bayes factors (AIBF) of Berger and Pericchi (1996a), are used as tools for the selection of the Bayesian model. Bayesian estimates are obtained by running the Metropolis-Hastings subchain in the Gibbs sampler. Finally, the results of numerical studies, designed to check the performance of the theoretical results discussed here, are presented.

Bayesian Model Selection for Nonlinear Regression under Noninformative Prior

  • Na, Jonghwa;Kim, Jeongsuk
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.719-729
    • /
    • 2003
  • We propose a Bayesian model selection procedure for nonlinear regression models under noninformative prior. For informative prior, Na and Kim (2002) suggested the Bayesian model selection procedure through MCMC techniques. We extend this method to the case of noninformative prior. The difficulty with the use of noninformative prior is that it is typically improper and hence is defined only up to arbitrary constant. The methods, such as Intrinsic Bayes Factor(IBF) and Fractional Bayes Factor(FBF), are used as a resolution to the problem. We showed the detailed model selection procedure through the specific real data set.