• 제목/요약/키워드: fractional

검색결과 2,157건 처리시간 0.029초

FRACTIONAL EULER'S INTEGRAL OF FIRST AND SECOND KINDS. APPLICATION TO FRACTIONAL HERMITE'S POLYNOMIALS AND TO PROBABILITY DENSITY OF FRACTIONAL ORDER

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.257-273
    • /
    • 2010
  • One can construct a theory of probability of fractional order in which the exponential function is replaced by the Mittag-Leffler function. In this framework, it seems of interest to generalize some useful classical mathematical tools, so that they are more suitable in fractional calculus. After a short background on fractional calculus based on modified Riemann Liouville derivative, one summarizes some definitions on probability density of fractional order (for the motive), and then one introduces successively fractional Euler's integrals (first and second kind) and fractional Hermite polynomials. Some properties of the Gaussian density of fractional order are exhibited. The fractional probability so introduced exhibits some relations with quantum probability.

FOURIER'S TRANSFORM OF FRACTIONAL ORDER VIA MITTAG-LEFFLER FUNCTION AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1101-1121
    • /
    • 2008
  • One proposes an approach to fractional Fourier's transform, or Fourier's transform of fractional order, which applies to functions which are fractional differentiable but are not necessarily differentiable, in such a manner that they cannot be analyzed by using the so-called Caputo-Djrbashian fractional derivative. Firstly, as a preliminary, one defines fractional sine and cosine functions, therefore one obtains Fourier's series of fractional order. Then one defines the fractional Fourier's transform. The main properties of this fractal transformation are exhibited, the Parseval equation is obtained as well as the fractional Fourier inversion theorem. The prospect of application for this new tool is the spectral density analysis of signals, in signal processing, and the analysis of some partial differential equations of fractional order.

  • PDF

FRACTIONAL GREEN FUNCTION FOR LINEAR TIME-FRACTIONAL INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • Momani, Shaher;Odibat, Zaid M.
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.167-178
    • /
    • 2007
  • This paper deals with the solutions of linear inhomogeneous time-fractional partial differential equations in applied mathematics and fluid mechanics. The fractional derivatives are described in the Caputo sense. The fractional Green function method is used to obtain solutions for time-fractional wave equation, linearized time-fractional Burgers equation, and linear time-fractional KdV equation. The new approach introduces a promising tool for solving fractional partial differential equations.

SOME RESULTS ON BINDING NUMBER AND FRACTIONAL PERFECT MATCHING

  • Zhu, Yan;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.339-344
    • /
    • 2007
  • The relationships between binding number and fractional edge (vertex)-deletability or fractional k-extendability of graphs are studied. Furthermore, we show that the result about fractional vertex-deletability are best possible.

Fractional 스퍼 감쇄 위상/주파수검출기를 이용한 fractional-N 주파수 합성기 (A Fractional-N Phase Locked Loop with Multiple Phase Frequency Detector)

  • 최영식;최혁환
    • 한국정보통신학회논문지
    • /
    • 제15권11호
    • /
    • pp.2444-2450
    • /
    • 2011
  • 본 논문에서는 다중 위상주파수검출기를 사용하여 fractional 스퍼를 줄이는 주파수 합성기를 제안하였다. 기존의 fractional-N 위상고정루프에서 발생하는 스퍼를 줄여주는 구조의 위상주파수 검출기를 사용하여 fractional-N 위상고정루프에서 fractional 스퍼를 억제할 수 있는 주파수 합성기를 설계하였다. 제안된 구조는 두 가지의 에지 검출 방식을 갖는 새로운 구조의 위상주파수검출기를 사용하여 위상주파수검출기의 출력 신호의 최대 폭을 제한하여 fractional 스퍼의 크기를 줄이도록 하였다. 제안된 주파수 합성기는 $0.35{\mu}m$ CMOS 공정 파라미터들을 사용하여 HSPICE로 시뮬레이션 하였다. 시뮬레이션의 결과는 제안된 형태의 주파수 합성기는 빠른 위상고정시간을 가지고 fractional 스퍼를 감소시킬 수 있음을 보여준다.

RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING

  • Anastassiou, George A.
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1423-1433
    • /
    • 2019
  • Here we present the right and left Riemann-Liouville fractional fundamental theorems of fractional calculus without any initial conditions for the first time. Then we establish a Riemann-Liouville fractional Polya type integral inequality with the help of generalised right and left Riemann-Liouville fractional derivatives. The amazing fact here is that we do not need any boundary conditions as the classical Polya integral inequality requires. We extend our Polya inequality to Choquet integral setting.

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M.;Hendy, A.S.
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.299-309
    • /
    • 2013
  • In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.

FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

  • Jumarie, Gyu
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.215-228
    • /
    • 2007
  • By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving non linear fractional partial differential equations. The key of this results is the fractional Taylor's series $f(x+h)=E_{\alpha}(h^{\alpha}D^{\alpha})f(x)$ where $E_{\alpha}(.)$ is the Mittag-Leffler function.

FRACTIONAL FIELD WITH STANDARD FRACTIONAL VECTOR CROSS PRODUCT

  • MANISHA M. KANKAREJ;JAI PRATAP SINGH
    • Journal of applied mathematics & informatics
    • /
    • 제41권4호
    • /
    • pp.811-819
    • /
    • 2023
  • In this research we have used the definition of standard fractional vector cross product to obtain fractional curl and fractional field of a standing wave, a travelling wave, a transverse wave, a vector field in xy plane, a complex vector field and an electric field. Fractional curl and fractional field for a complex order are also discussed. We have supported the study with calculation of impedance at γ = 0, 0 < γ < 1, γ = 1. The formula discussed in this paper are useful for study of polarization, reflection, impedance, boundary conditions where fractional solutions have applications.