• Title/Summary/Keyword: fractal surface

Search Result 152, Processing Time 0.022 seconds

Effects of Particle Shapes on Unipolar Diffusion Charging of Non-Spherical Particles (비구형 입자의 형상에 따른 단극 확산 하전 특성)

  • Oh, Hyun-Cheol;Park, Hyung-Ho;Kim, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.501-509
    • /
    • 2004
  • Unipolar diffusion charging of non-spherical particles was investigated for various particle shapes. We researched with TiO$_2$agglomerates produced by the thermal decomposition of titanium tetraisopropoxide (TTIP) vapor. TTIP was converted into TiO$_2$, in the furnace reactor and was subsequently introduced into the sintering furnace. Increasing the temperature in the sintering furnace, aggregates were restructured into higher fractal dimensions. The aggregates were classified according to their mobility using a differential mobility analyzer. The projection area and the mass fractal dimension of particles were measured with an image processing technique performed by using transmission electron microscope (TEM) photograph. The selected aggregates were charged by the indirect photoelectric-charger and the average number of charges per particle was measured by an aerosol electrometer and a condensation particle counter. For the particles of same mobility diameter, our results showed that the particle charge quantity decreases as the sintering temperature increases. This result is understandable because particles with lower fractal dimension have larger capacitance and geometric surface area.

Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis (멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구)

  • Nam, Seungkuk;Oh, Yumrak;Jeon, Seonghee
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

Fractal Analysis of Tidal Channel using High Resolution Satellite Image (고해상도 위성 영상을 이용한 조류로의 프랙털 분석)

  • Eom, Jin-Ah;Lee, Yoon-Kyung;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.567-573
    • /
    • 2007
  • Tidal channel development is influenced by sediment type, grain size, composition and tidal current. Tidal channels are usually characterized by channel formation, density and shape. Quantitative analysis of tidal channels using remotely sensed data have rarely been studied. The objective of this study is to quantify tidal channels in terms of fractal dimension and compare different inter-tidal channel patterns and compare with DEM (Digital Elevation Model). For the fractal analysis, we used box counting method which had been successfully applied to streams, coastlines and others linear features. For a study, the southern part of Ganghwado tidal flats was selected which know for high dynamics of tidal currents and vast tidal flats. This area has different widths and lengths of tidal channels. IKONOS was used for extracting tidal channels, and the box counting method was applied to obtain fractal dimensions (D) for each tidal channel. Yeochari area where channels showed less dense development and low DEM had low fractal dimenwion near $1.00{\sim}1.20$. Area (near Donggumdo and Yeongjongdo) of dendritic channel pattern and high DEM resulted in high fractal dimension near $1.20{\sim}1.35$. The difference of fractal dimensions according to channel development in tidal flats is relatively large enough to use as an index for tidal channel classification. Therefore we could conclude that fractal dimension, channel development and DEM in tidal channel has high correlation. Using fractal dimension, channel development and DEM, it would be possible to quantify the tidal channel development in association with surface characteristics.

Compact-Size Fractal Antenna with Stable Radiation Properties for Wi-Fi and WiMAX Communications

  • Abed, Amer T.;Singh, Mandeep S.J.;Islam, Mohammad Tariqul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2734-2747
    • /
    • 2018
  • In this study, a novel fractal ring antenna with a compact size of $24{\times}9{\times}0.8mm^3$ was configured using three iterations. Low profile, circular polarization, and measured operating bands (4.5-6.5 GHz) meet specifications of the upper band used in Wi-Fi and WiMAX applications. The antenna featured, stable radiation properties, especially gain and efficiency, in the notched band (92%). In deep, the antenna impedance, reflection coefficients, surface current distribution and circular polarization for the three iterations had been studied to improve the process of antenna design and its radiation characteristics.

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

The necessary number of profile lines for the analysis of concrete fracture surfaces

  • Konkol, Janusz;Prokopski, Grzegorz
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.565-576
    • /
    • 2007
  • The article describes a technique for the measurement of the level of complexity of fracture surfaces by the method of vertical sections, and a performed statistical analysis of the effect of profile lines on the fractographic and fractal parameters of fractures, i.e. the profile line development factor, $R_L$, and the fracture surface development factor, $R_S$, (as defined by the cycloid method), as well as the fractal dimension, $D_C$, (as determined by the chord method), and the fractal dimension, $D_{BC}$, (as determined by the box method). The above-mentioned parameters were determined for fracture surfaces of basalt and gravel concretes, respectively, which had previously been subjected to fracture toughness tests. The concretes were made from mixtures of a water/cement ratio ranging from 0.41 to 0.61 and with a variable fraction of coarse aggregate to fine aggregate, $C_{agg.}/F_{agg.}$, in the range from 1.5 to 3.5. Basalt and gravel aggregate of a fraction to maximum 16 mm were used to the tests. Based on the performed analysis it has been established that the necessary number of concrete fracture profile lines, which assures the reliability of obtained testing results, should amount to 12.

The Prediction of Rubber Friction considering Road Characteristics (노면 특성을 고려한 고무 마찰 예측 연구)

  • Nam, Seungkuk;Oh, Yumrak;Jeon, Seonghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.105-110
    • /
    • 2014
  • This paper presents the hysteresis friction of a sliding elastomer on various types of surfaces. The hysteresis friction is calculated by means of an analytical model which considers the energy spent by the local deformation of the rubber due to surface asperities. By establishing the fractal character of the surfaces, the contribution to rubber friction of roughness at different length scales is accounted for. High resolution surface profilometer is used in order to calculate the main three surface descriptors and the minimal length scale that can contribute to hysteresis friction. The results show that this friction prediction can be used in order to characterize in an elegant manner the surface morphology of various surfaces and to quantify the friction coefficient of sliding rubber as a function of surface roughness, load and speed.

Influence of Ammonium Phosphate on Mycelial Morphology during Submerged Cultivation of Ganoderma lucidum (영지의 액체배양에 있어서 균사체 형태에 미치는 Ammonium Phosphate의 영향)

  • Lee, Kyu-Min;Lee, Shin-Young
    • The Korean Journal of Mycology
    • /
    • v.29 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • The mycelial morphology during submerged cultivation of Ganoderma ludium using by air-lift fermenter system were analyzed by image processing system and the characterization of mycelial morphology were investigated. In submerged culture using medium with different ammonium phosphate concentrations, the various morphological forms of G. lucidum mycelium were observed. The filamentous forms such as non-branched long filamentous mycelium, non-branched short mycelium, branched long filamentous mycelium, branched short mycelium, entangled mycelium and clump were observed, and also, and also, the pelleted forms such as smooth pellet, rough pellet and hollow rough pellet were observed. The mycelial morphology was changed from the filamentous to the pelleted forms by addition of ammonium phosphate. The fractal dimensions of pelleted and filamentous forms were 1.05 and 1.3, respectively, while the fractal dimension of mixtures of pelleted and filamentous forms was 1.16. Therefore, the fractal dimension was found to be more effective index for the detection of the mycelial morphology and morphological change during batch cultivation. The circularity was also found to be useful for evaluating the surface growth of pelleted mycelium.

  • PDF

The Surface Image Properties of BST Thin Film by Depositing Conditions (코팅 조건에 따른 BST 박막의 표면 이미지 특성)

  • Hong, Kyung-Jin;Ki, Hyun-Cheol;Ooh, Soo-Hong;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.107-110
    • /
    • 2002
  • The optical memory devices of BST thin films to composite $(Ba_{0.7}\;Sr_{0.3})TiO_{3}$ using sol-gel method were fabricated by changing of the depositing layer number on $Pt/Ti/SiO_{2}/Si$ substrate. The structural properties of optical memory devices to be ferroelectric was investigated by fractal analysis and 3-dimension image processing. The thickness of BST thin films at each coating numbers 3, 4 and 5 times was $2500[\AA]$, $3500[\AA]$ and $3800[\AA]$. BST thin films exhibited the most pronounced grain growth. The surface morphology image was roughness with coating numbers. The thin films increasing with coating numbers shows a more textured and complex configuration.

  • PDF

Construction of Attractor Simulator for Cutting Characteristics Evaluation of Non-Ferrous Metals (비철금속의 절삭성 평가를 위한 어트랙터 시뮬레이터의 구축)

  • 고준빈;윤인식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • This study proposes the construction of attractor simulator for cutting characteristics evaluation of non-ferrous metals. Also this paper aims to find the optimal cutting conditions of diamond turning machine by measuring surface form and roughness to perform the cutting experiment of non-ferrous metals, which are aluminum, with diamond tool. As well, according to change cutting conditions such as feed rate, cutting force and surface roughness are measured by tool dynamometer. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics. Constructed attractor in this study can be used for cutting characteristics evaluation of non-ferrous metals