이미지 디자인 등에 사용하기에 용이한 정다각형의 회전대칭성을 갖는 프랙탈 생성에 대해 연구하였다. Loocke의 논문[13]에서 사용한 방법과 같이 회전, 축소 아핀함수를 기반으로 하되 제곱근(square root)함수 대신 줄리아 셋(Julia set)을 생성하는 함수들로 확장하여 IFS(iterated function systems)를 구성하였다. 그 결과 줄리아 셋의 모양에 바탕을 둔 회전 대칭적 프랙탈을 생성할 수 있었으며, 줄리아 셋의 모양이 잘 나타나지 않는 경우에는 IFS 생성 알고리즘의 확률적 함수선택 부분을 변경하여 줄리아 셋의 모양이 뚜렸해지도록 할 수 있음을 보였다. 또한 줄리아 셋의 모양을 지수의 변화를 통해 변형하는 방법을 제안하였다.
이 논문에서는 맨델브로트집합의 개념을 n차 복소 다항식 Zⁿ+c(c∈C, n≥2)에 확장하여 n차 분기집합 및 줄리아 집합을 정의하고, 이 집합의 대칭성, 유계성 및 연결성 등에 관하여 이론적으로 연구하였다. 그 연구결과를 이용하여 n차 분기집합 및 줄리아 집합을 효율적으로 작성하는 알고리즘을 고안하고, C++컴퓨터 언어를 사용하여 마이크로소프트사의 윈도우 운영체제하에서 사용자가 마우스를 조작하여 n차 분기집합 및 줄리아 집합을 구성할 수 있도록 소프트웨어 MANJUL을 개발하는 것이 본 논문의 목적이다. MANJUL 소프트웨어의 중요한 특징으로서 CUI(graphical user interfaces) 환경에서 단순한 마우스 조작을 통하여 n차 분기집합 및 줄리아 집합을 작성하고 그 일부분을 확대함은 물론, n차 분기집합 성분의 주기등을 계산 및 저장함으로써, 이 집합들의 다양한 이론적 성질과 기하학적 구조를 시각적으로 확인할 수 있도록 하였다.
Fractal dimension has been used for texture analysis as it is highly correlated with human perception of surface roughness and applied to quantifying the structures of wide range of objects in biology and medicine. On the other hand, the evaluation of the human skin state is based solely on the subjective assessment of clinicians; this assessment may vary from moment to moment and from rater to rater. Therefore we attempt to analysis of skin texture image using fractal dimension and discuss its application to evaluating human skin state. It can be helpful for extracting human features and also can be useful for detection of many human skin diseases. This paper presents a method to calculate fractal dimension of skin with use of camera lens magnification. We take multiple pictures frequently from skin with different camera lens magnification as a magnification factor of fractal set, and counting the number of objects (cells) in each picture as a number of self similar pieces of fractal set.
The main components in the generalized Mandelbrot sets are under a theoretical investigation for their parametric boundary equations. Using the boundary geometries, a fast construction algorithm is introduced for the generalized Mandelbrot set. This fast algorithm definitely reduces the construction CPU time in comparison with the naive algorithm. Its graphic implementation displays the mysterious and beautiful fractal sets.
기존의 이산 웨이브렛 변환 기반 플랙탈 영상 압축은 프랙탈 부호화시 고정된 블럭 크기를 사용하므로 낮은 비트율에서 PSNR을 감소시킨다. 본 논문에서는 플랙탈 부호화시 가변 블록 크기를 사용하여 PSNR을 개선하는 이산 웨이브렛 기반 프랙탈 영상 부호화를 제안한다. 제안된 방법에서는 먼저 이산 웨이브렛 변환 계수들의 절대값을 최하고, 같은 공간 영역에 해당하는 다른 고주파 부대역의 이산 웨이브렛 변환 계수들을 묶어서 레인지 블록과 도메인 블록을 만든다. 그리고 각각의 레인지 블록 레벨의 레인지 블록에 대한 프랙탈 코드를 지정하고, 프랙탈 부호화,\ulcorner0\ulcorner부호화와 스칼라 양자화중 하나를 선택하여 만든 집합인 결정 트리 C를 만들고 스칼라 양자화기의 집합 q를 선택한다. 웨이브렛 계수, 프랙탈 코드와 결정 트리를 적응적 산술 부호화기를 사용하여 엔트로피 nq호화 한다. 제안된 방법은 낮은 비트율에서 PSNR을 개선하고 복원 영상의 블록킹 현상을 제거한다. 실험 결과를 통해서 제안한 방법은 기존의 프랙탈 부호화 방법과 웨이브렛 변환 부호화 방법에 비해 더 좋은 PSNR과 더 높은 압축율을 얻었다.
This study intended arousal of other viewpoints that deal with and understand spaces and shapes, by describing the concept of 'dimensions' into visual patterns. Above all, the core concept of spatial dimensions was defined as 'expandability'. Then, first, the 'golden ratio', 'Fibonacci sequence', and 'fractal theory' were defined as elements of each dimension by stage. Second, a 'unit cell' of one dimension as 'minimum unit particles' was set. Next, Fibonacci sequence was set as an extended concept into two dimensions. Expansion into three dimensions was applied to the concept of 'self-similarity repetition' of 'Fractal'. In 'fractal dimension', the concept of 'regularity of irregularity' was set as a core attribute. Plus, Platonic solids were applied as a background concept of the setting of the 'unit cell' from the viewpoint of 'minimum unit particles'. Third, while 'characteristic patterns' which are shown in the courses of 'expansion' of each dimension were embodied for the visual expression forms of dimensions, expansion forms of dimensions are based on the premise of volume, directional nature, and concept of axes. Expressed shapes of each dimension are shown into visually diverse patterns and unexpected formative aspects, along with the expression of relative blank spaces originated from dualism. On the basis of these results, the 'unit cell' that is set as a concept of theoretical factor can be defined as a minimum factor of a basic algorism caused by other purpose. In here, by applying diverse pattern types, the fact that meaning spaces, shapes, and dimensions can be extracted was suggested.
Lucas Glaucio da Silva;Waleska Rayanne Sizinia da Silva Monteiro;Tiago Medeiros de Aguiar Moreira;Maria Aparecida Esteves Rabelo;Emílio Augusto Campos Pereira de Assis;Gustavo Torres de Souza
Applied Microscopy
/
제51권
/
pp.6.1-6.9
/
2021
Histopathology is a well-established standard diagnosis employed for the majority of malignancies, including breast cancer. Nevertheless, despite training and standardization, it is considered operator-dependent and errors are still a concern. Fractal dimension analysis is a computational image processing technique that allows assessing the degree of complexity in patterns. We aimed here at providing a robust and easily attainable method for introducing computer-assisted techniques to histopathology laboratories. Slides from two databases were used: A) Breast Cancer Histopathological; and B) Grand Challenge on Breast Cancer Histology. Set A contained 2480 images from 24 patients with benign alterations, and 5429 images from 58 patients with breast cancer. Set B comprised 100 images of each type: normal tissue, benign alterations, in situ carcinoma, and invasive carcinoma. All images were analyzed with the FracLac algorithm in the ImageJ computational environment to yield the box count fractal dimension (Db) results. Images on set A on 40x magnification were statistically different (p = 0.0003), whereas images on 400x did not present differences in their means. On set B, the mean Db values presented promising statistical differences when comparing. Normal and/or benign images to in situ and/or invasive carcinoma (all p < 0.0001). Interestingly, there was no difference when comparing normal tissue to benign alterations. These data corroborate with previous work in which fractal analysis allowed differentiating malignancies. Computer-aided diagnosis algorithms may beneficiate from using Db data; specific Db cut-off values may yield ~ 99% specificity in diagnosing breast cancer. Furthermore, the fact that it allows assessing tissue complexity, this tool may be used to understand the progression of the histological alterations in cancer.
Na Wu;Chunxia Zhang;Shanyu Han;Juan An;Wentang Xia
Journal of Electrochemical Science and Technology
/
제14권2호
/
pp.194-204
/
2023
Models based on diffusion-limited aggregation (DLA) have been extensively used to explore the mechanisms of dendritic particle aggregation phenomena. The physical and chemical properties of systems in which DLA aggregates emerge are given in their fractal. In this paper, we present a comprehensive study of the growth of electrodeposited copper dendrites in flat plate electrochemical cells from a fractal perspective. The effects of growth time, applied voltage, copper ion concentration, and electrolyte acidity on the morphology and fractal dimension of deposited copper were examined. 'Phase diagram' set out the variety of electrodeposited copper fractal morphology analysed by metallographic microscopy. The box counting method confirms that the electrodeposited dendritic structures manifestly exhibit fractal character. It was found that with the increase of the voltage and copper ion concentration. The fractal copper size becomes larger and its morphology shifts towards a dendritic structure, with the fractal dimension fluctuating around 1.60-1.70. In addition, the morphology of the deposited copper is significantly affected by the acidity of the electrolyte. The increase in acidity from 0.01 to 1.00 mol/L intensifies the hydrogen precipitation side reactions and the overflow path of hydrogen bubbles affects the fractal growth of copper dendrites.
We present some properties characterizing the Mandelbrot set of quadratic rational maps. Any quadratic rational map is conjugate to either $z^2+c$ or ${\lambda}(z+1/z)+b$. For ${\mid}{\lambda}{\mid}=1$, we find the figure of the Mandelbrot set $M_{\lambda}$, the set of parameters b for which the Julia set of ${\lambda}(z+1/z)+b$ is connected. It is seen to be the whole complex plane if ${\lambda}{\neq}1$, but it is intricate fractal if ${\lambda}=1$. This supplements the work already investigated for the case ${\mid}{\lambda}{\mid}>1$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.