• Title/Summary/Keyword: four-axis force/torque sensor

Search Result 3, Processing Time 0.015 seconds

Design of Structure of Four-Axis Force/Torque Sensor with Parallel Step Plate Beams (4축 힘/토크 센서의 구조 설계)

  • Lee, Kyung-Jun;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1147-1152
    • /
    • 2014
  • This paper describes the design of a four-axis force/torque sensor with PSPBs (Parallel Step Plate Beams). The sensor is composed of eight PSPBs, a force/torque transmitting block, and fixing blocks. It is designed by using the FEM(Finite Element Method), and fabricated by using strain gages. The characteristic tests of the sensor are carried out, and the interference error, repeatability error, and non-linearity error are less than 2.21%, 0.03% and 0.03%. Furthermore, the structure of the four-axis force/torque sensor with PSPBs has a larger rated capacity than that of the four-axis force/torque sensor with PPBs under the same overall sensor size and the same rated output. It is thought that the developed four-axis force/torque sensor with PSPBs can be used for measuring the forces and torques in an intelligent robot, automation devices, etc.

Improved Wearability of the Upper Limb Rehabilitation Robot NREX with respect to Shoulder Motion (어깨의 움직임을 중심으로 한 상지재활로봇 NREX의 착용감 개선)

  • Song, Jun-Yong;Lee, Seong-Hoon;Song, Won-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.318-325
    • /
    • 2019
  • NREX, an upper limb exoskeleton robot, was developed at the National Rehabilitation Center to assist in the upper limb movements of subjects with weak muscular strength and control ability of the upper limbs, such as those with hemiplegia. For the free movement of the shoulder of the existing NREX, three passive joints were added, which improved its wearability. For the flexion/extension movement and internal/external rotation movement of the shoulder of the robot, the ball lock pin is used to fix or rotate the passive joint. The force and torque between a human and a robot were measured and analyzed in a reaching movement for four targets using a six-axis force/torque sensor for 20 able-bodied subjects. The addition of two passive joints to allow the user to rotate the shoulder can confirm that the average force of the upper limb must be 31.6% less and the torque must be 48.9% less to perform the movement related to the axis of rotation.

c-CMG Cluster for Small Satellites

  • Lee, Seung-Mok;Seo, Hyun-Ho;Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.105-114
    • /
    • 2007
  • This article presents the details of a designed control moment gyroscope (CMG) with a constant speed momentum wheel and one-axis-gimbal, and its experimental results performed at Korea Aerospace Research Institute. The CMG which is able to produce a torque of lOO mNm per each, is mounted in a pyramid configuration with four SGCMGs. Each CMG test and a single axis maneuver test with four-CMG cluster configuration are performed to confirm their performance on a ground-test facilities consisted of three major parts: a vibration isolation system, a dynamic force plate (Kistler sensor), and a DSP board. These facilities provide the accurate data of three axial and torques from the control moment gyro. Details of the CMG experimental results are presented with discussion of the experimental errors. The experimental data are compared with theoretical results and both results are used to verify their performance specifications.