• Title/Summary/Keyword: four properties

Search Result 3,394, Processing Time 0.037 seconds

Modern Concepts of Restructured Meat Production and Market Opportunities

  • Abdul Samad;AMM Nurul Alam;Swati Kumari;Md. Jakir Hossain;Eun-Yeong Lee;Young-Hwa Hwang;Seon-Tea Joo
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.284-298
    • /
    • 2024
  • Restructured meat (RM) products are gaining importance as an essential component of the meat industry due to consumers' interest in health benefits. RM products imply the binding or holding of meat, meat by-products, and vegetable proteins together to form a meat product with meat's sensory and textural properties. RM products provide consumers with diversified preferences like the intake of low salt, low fat, antioxidants, and high dietary fiber in meat products. From the point of environmental sustainability, RM may aid in combining underutilized products and low-valued meat by adequately utilizing them instead of dumping them as waste material. RM processing technique might also help develop diversified and new hybrid meat products. It is crucial to have more knowledge on the quality issues, selection of binding agents, their optimum proportion, and finally, the ideal processing techniques. It is observed in this study that the most crucial feature of RM could be its healthy products with reduced fat content, which aligns with the preferences of health-conscious consumers who seek low-fat, low-salt, high-fiber options with minimal synthetic additives. This review briefly overviews RM and the factors affecting the quality and shelf life. Moreover, it discusses the recent studies on binding agents in processing RM products. Nonetheless, the recent advancements in processing and market scenarios have been summarized to better understand future research needs. The purpose of this review was to bring light to the ways of sustainable and economical food production.

Advancements in External-Source-Induced Microfluidic Crystallization Techniques (외부 자극을 통한 미세유체장치 기반 결정화 기술)

  • Jiye Jang;Chang Hun Han;Jieun Lee;In Hwan Jung;Bum Jun Park
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.267-272
    • /
    • 2024
  • This review explores recent advancements in microfluidic crystallization techniques utilizing energy from external sources on a small scale. We focus on four representative types of external sources: ultrasound, laser, microwave, and electric field, emphasizing their impact on crystal formation. This highlights the benefits of using external sources in crystallization, such as improved crystal quality, structure formation, and changes in physical properties. Providing a comprehensive overview of crystallization techniques employing external sources, the paper discusses the potential developments in the field of crystallization through the application of these external energy sources.

Shear Behavior and Performance of Deep Beams Made with Self-Compacting Concrete

  • Choi, Y.W.;Lee, H.K.;Chu, S.B.;Cheong, S.H.;Jung, W.Y.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.65-78
    • /
    • 2012
  • An experimental study was carried out to evaluate fresh properties of a moderately high-strength (high-flowing) self-compacting concrete (SCC) and to investigate shear behavior and performance of deep beams made with SCC. Fresh and hardened properties of normal concrete (NC) and SCC were evaluated. The workability and compacting ability were observed based on casting time and number of surface cavities, respectively. Four-point loading tests on four deep beams (two made with SCC and two with NC) were then conducted to investigate their shear behavior and performance. Shear behavior and performance of beams having two different web reinforcements in shear were systematically investigated in terms of crack pattern, failure mode, and load-deflection response. It was found from the tests that the SCC specimen having a normal shear reinforcement condition exhibited a slightly higher load carrying capacity than the corresponding NC specimen, while the SCC specimen having congested shear reinforcement condition showed a similar load carrying capacity to the corresponding NC specimen. In addition, a comparative study between the present experimental results and theoretical results in accordance with ACI 318 (Building Code Requirements for Reinforced Concrete (ACI 318-89) and Commentary-ACI 318R-89, 1999), Hsu-Mau's explicit method (Hsu, Cem Concr Compos 20:419-435, 1998; Mau and Hsu, Struct J Am Concr Inst 86:516-523, 1989) and strut-and-tie model suggested by Uribe and Alcocer (2002) based on ACI 318 Appendix A (2008) was carried out to assess the applicability of the aforementioned methods to predict the shear strength of SCC specimens.

Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories

  • Attia, Amina;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.187-212
    • /
    • 2015
  • In this paper, various four variable refined plate theories are presented to analyze vibration of temperature-dependent functionally graded (FG) plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present model is reduced, significantly facilitating engineering analysis. These theories account for parabolic, sinusoidal, hyperbolic, and exponential distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Uniform, linear, nonlinear and sinusoidal thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from Hamilton's principle. Analytical solutions for the free vibration analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent and temperature-independent FG plates and validated with known results in the literature. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature fields on the vibration characteristics. It can be concluded that the present theories are not only accurate but also simple in predicting the free vibration responses of temperature-dependent FG plates.

Effects of liposomal-curcumin on five opportunistic bacterial strains found in the equine hindgut - preliminary study

  • Bland, S.D.;Venable, E.B.;McPherson, J.L.;Atkinson, R.L.
    • Journal of Animal Science and Technology
    • /
    • v.59 no.6
    • /
    • pp.15.1-15.5
    • /
    • 2017
  • Background: The horse intestinal tract is sensitive and contains a highly complex microbial population. A shift in the microbial population can lead to various issues such as inflammation and colic. The use of nutraceuticals in the equine industry is on the rise and curcumin is thought to possess antimicrobial properties that may help to minimize the proliferation of opportunistic bacteria. Methods: Four cecally-cannulated horses were utilized to determine the optimal dose of liposomal-curcumin (LIPC) on reducing Streptococcus bovis/equinus complex (SBEC), Escherichia coli K-12, Escherichia coli general, Clostridium difficile, and Clostridium perfringens in the equine hindgut without adversely affecting cecal characteristics. In the first study cecal fluid was collected from each horse and composited for an in vitro, 24 h batch culture to examine LIPC at four different dosages (15, 20, 25, and 30 g) in a completely randomized design. A subsequent in vivo $4{\times}4$ Latin square design study was conducted to evaluate no LIPC (control, CON) or LIPC dosed at 15, 25, and 35 g per day (dosages determined from in vitro results) for 9 days on the efficacy of LIPC on selected bacterial strains, pH, and volatile fatty acids. Each period was 14 days with 9 d for acclimation and 5 d withdrawal period. Results: In the in vitro study dosage had no effect ($P{\geq}0.42$) on Clostridium strains, but as the dose increased SBEC concentrations increased (P = 0.001). Concentrations of the E. coli strain varied with dose. In vivo, LIPC's antimicrobial properties, at 15 g, significantly decreased (P = 0.02) SBEC when compared to 25 and 35 g dosages. C. perfringens decreased linearly (P = 0.03) as LIPC dose increased. Butyrate decreased linearly (P = 0.01) as LIPC dose increased. Conclusion: Further studies should be conducted with a longer dosing period to examine the antimicrobial properties of curcumin without adversely affecting cecal characteristics.

Seaweed Fermentation and Probiotic Properties of Lactic Acid Bacteria Isolated from Korean Traditional Foods (전통식품 유래 유산균의 해조류 발효 및 Probiotic 특성)

  • Kim, Jin-Hak;Park, La-Young;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1481-1487
    • /
    • 2016
  • Lactic acid bacteria showing alginate-degrading and cellulolytic activity were isolated and identified as a starter for seaweed fermentation. A total of 331 strains of lactic acid bacteria isolated from various Korean traditional foods, such as Kimchi, Jeotgal, and Makgeolli, were examined alginate-degrading and cellulolytic activity by the plate assay method. Six strains showed strong alginate-degrading and cellulolytic activity among the isolated 331 strains. Among these six strains, four strains (strain No. 162, 164, 192, and 196) showed probiotic properties (antimicrobial activity, tolerance to simulated gastric juice, artificial bile acid, and NaCl). No. 192 strain (Gram-positive cocci, catalase negative, and homofermentative) showed the best probiotic properties among selected strains and was identified as Enterococcus faecium by 16S rRNA sequencing. Strain No. 192 (E. faecium) showed the best growth and antioxidative activity during seaweed (sea mustard and sea tangle) fermentation for 72 h at $37^{\circ}C$ among the four selected strains.

Effect of NaCl Concentration and Cooking Temperature on the Color and Pigment Characteristics of Presalted Ground Chicken Breasts

  • Bae, Su Min;Cho, Min Guk;Hong, Gi Taek;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.417-430
    • /
    • 2018
  • This study was conducted to determine the effects of NaCl concentration and cooking temperature on the color and pigment characteristics of presalted ground chicken breasts. Four treatments with different salt concentrations (0%, 1%, 2%, and 3%) were prepared and stored for 7 d prior to cooking. Each sample was cooked to four endpoint temperatures ($70^{\circ}C$, $75^{\circ}C$, $80^{\circ}C$, and $85^{\circ}C$). The salt concentration affected the color and pigment properties of the cooked ground chicken breasts. As the salt concentration increased, the cooking yield and residual nitrite content also increased. However, the samples with 1%, 2%, and 3% NaCl showed similar nitrosyl hemochrome and total pigment contents. Among the products containing salt, the samples with 3% NaCl showed the lowest percentage myoglobin denaturation (PMD) and the lowest CIE $a^*$ values. The cooking temperature had limited effects on the pigment properties of cooked ground chicken breasts. The oxidation-reduction potential and residual nitrite contents increased with cooking temperature, while the PMD, nitrosyl hemochrome, total pigment contents and CIE $a^*$ values were similar in the samples cooked at different temperatures. These results indicated that the addition of up to 2% salt to ground chicken breasts and storage for 7 d could cause the pink color defect of cooked products. However, the addition of 3% NaCl could reduce the redness of the cooked products.

Studies on the Evaluation of Acoustical Properties of the Replaceable Species for Sounding Board by Vibration Test (진동시험(振動試驗)에 의한 대체향판수종(代替響板樹種)의 음향적(音響的) 성질(性質)의 평가(評價)에 관한 연구(硏究))

  • Kang, Chun-Won;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.71-80
    • /
    • 1991
  • This study was carried out to investigate replaceable species with the conventional sounding board sitka spruce. by comparing the dynamic properties such as density, dynamic Young's modulus and internal friction Dynamic Young's modulus. internal friction of longitudinal and radial direction measured in free mass-free boundary condition for facile vibration analysis and measured by forced vibration method. Dynamical properties of four species were measured on squared plate specimen that the four edges were hung vertically by threads and driven magnetically through an iron piece glued on the specimen, by the use of condenser microphone as vibration transducer, and analyzed by FFT analyzer. The results obtained were as follows: 1. Chaldni method using aluminum powder was proper to identify the vibration mode in the plate vibration and it was possible to verify the resornance mode. 2. It was considered that it was necessary to investigate the influence of adhesive part on the plate vibration when the sounding board was made by two or three small board adhesion. 3. It was considered that plate vibration method, which was a superior to the vibration test of beam, was suitable for selecting suounding board because dynamic Young's modulus and internal friction show different order according to longitudinal and radial direction. 4. Paulownia tomentosa Thunb.) Steudel has been considered to be replaceable species with sitka spruce because it has high dynamic Young's modulus compared with low density, low internal friction, and K value of Paulownia tomentosa (Thunb.) Steudel is greater than that of sitka spruce.

  • PDF

Physicochemical Properties and Copper(II) Ion Adsorption Ability of Wood Charcoals (소나무 및 참나무 백탄의 물성과 구리(II) 이온 흡착 효과)

  • Lee, Oh-Kyu;Jo, Tae-Su
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.55-63
    • /
    • 2006
  • Physicochemical properties and copper (II) adsorption ability of two oakwood and two pinewood charcoals, which were manufactured in traditional mode and commercialized in Korea, were examined pHs of these four wood charcoals were between 9.5 and 9.8. In the elemental contents of the wood charcoal, the contents of carbon atom (C) in the four samples were between 85-90%, while the content of hydrogen atom (H) in pinewood charcoal of the company 'S' was 1.62% and this value was three time higher than those of other samples. For iodine adsorption and specific surface area, the pinewood charcoal sample showed higher values than those of the oakwood charcoals. In the copper (II) ion adsorption in aqueous solution, the adsorption rate was increased by the increase of treated amounts of charcoal, treatment time, and pH.

  • PDF

Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete

  • Mazloom, Moosa;Soltani, Abolfazl;Karamloo, Mohammad;Hassanloo, Ahmad;Ranjbar, Asadollah
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.45-72
    • /
    • 2018
  • In the present study, a special attention has been paid to the effects regarding the use of different superplasticizers in different dosages. To do so, 36 mixes of normal and self-compacting concrete with two water/binder ratios of 0.35 and 0.45, four different types of superplasticizer including melamine-formaldehyde, naphthalene-formaldehyde, carboxylic-ether and poly-carboxylate, four different superplasticizer/cement ratios of 0.4%, 0.8%, 1.2% and 1.6% and two silica fume/cement ratios of 0% and 10% have been cast. Moreover, the initial and final setting time of the pastes have been tested. For self-compacting mixes, flow time, slump flow, V-funnel, J-ring and L-box tests have been carried out as well as testing the compressive strength and rupture modulus. For normal concrete mixes,slump test has been conducted to assess the workability of the mix and then for each mix, the compressive strength and rupture modulus have been determined. The results indicate that in addition to the important role of superplasticizer type and dosage on fresh state properties of concrete, these parameters as well as the use of silica fume could affect the hardened state properties of the mixes. For instance, the mixes whose superplasticizer were poly-carboxylic-ether based showed better compressive and tensile strength than other mixes. Besides, the air contents showed robust dependency to the type of the superplasticizer. However, the use of silica fume decreased the air contents of the mixes.