• 제목/요약/키워드: four properties

검색결과 3,391건 처리시간 0.031초

면, 폴리에스테르, 나일론, 면 교직물의 염색후 역학특성, 태 그리고 봉제성 변화 (Changes in Mechanical Properties, Hand, and Appearance according to Dyeing of Cotton, PET, Nylon, and Cotton Mixture Fabrics)

  • 조길수;이은주;임지영
    • 한국의류학회지
    • /
    • 제20권6호
    • /
    • pp.1138-1150
    • /
    • 1996
  • This study was carried out to investigate the effects of dyeing on the mechanical properties, primary hand, total hand value (THV), and total appearance value (TAV) of woven fabrics. Cotton, PET, nylon, cotton/PET, and cotton/nylon woven fabrics were used as test specimens. Each of fabric was dyed under the same conditions as the fabrics for sportswear which consumers have selected as best. Mechanical properties of specimens were measured by KES-FB system and primary hand and THV were calculated by equation KN -201-MDY and KN-301-WINTER respectively. TAV was calculated by KN (eq. 10). The results were as follows: 1. In mechanical properties. tensile energy increased when cotton and two cotton mixture fabrics were dyed and decreased when polyester and nylon fabrics were dyed. Bending rigidity and shear rigidity decreased after all fabrics were dyed except nylon and cotton/ nylon mixture fabrics showing higher rigidities. Cotton fabrics showed higher surface roughness while other fabrics did lower values after dyeing. 2. In evaluation of primary hand and total hand , four primary hands of cotton fabrics so decreased after dyeing that THV were lowered. Numeri, Fukurami, and Sofutosa in primary hand of polyester, cotton/polyester, and cotton/nylon fabrics and Koshi and Numeri of nylon fabrics increased after dyeing and therefore THV of four fabrics were improved. 3. Cotton and polyester fabrics showed higher TAV due to their lower bending and shear rigidity, while nylon and cotton/nylon fabrics did lower values due to their higher shear rigidity. 4. It was proposed that the method of dyeing or treatment for minimizing the decrease of THV of cotton fabrics and TAV of nylon fabrics should be developed.

  • PDF

On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model

  • Belkorissat, Ismahene;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.1063-1081
    • /
    • 2015
  • In this paper, a new nonlocal hyperbolic refined plate model is presented for free vibration properties of functionally graded (FG) plates. This nonlocal nano-plate model incorporates the length scale parameter which can capture the small scale effect. The displacement field of the present theory is chosen based on a hyperbolic variation in the in-plane displacements through the thickness of the nano-plate. By dividing the transverse displacement into the bending and shear parts, the number of unknowns and equations of motion of the present theory is reduced, significantly facilitating structural analysis. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG nano-plate are computed using Mori-Tanaka homogenization scheme. The governing equations of motion are derived based on the nonlocal differential constitutive relations of Eringen in conjunction with the refined four variable plate theory via Hamilton's principle. Analytical solution for the simply supported FG nano-plates is obtained to verify the theory by comparing its results with other available solutions in the open literature. The effects of nonlocal parameter, the plate thickness, the plate aspect ratio, and various material compositions on the dynamic response of the FG nano-plate are discussed.

쌀 품종의 아밀로오스 함량에 따른 호화 및 취반 특성 비교 (Varietal Variation of Gelatinization and Cooking Properties in Rice having Different Amylose Contents)

  • 윤미라;오세관;이정희;김대중;최임수;이점식;김정곤
    • 한국식품영양학회지
    • /
    • 제25권4호
    • /
    • pp.762-769
    • /
    • 2012
  • In order to study the cooking characteristics of four rice cultivars of Seolhyangchal, Baegjinju, Ilpum and Haiami, we investigated the relationship between the textures of cooked rice and their physicochemical properties. Different levels in grain weight. length/width ratio and amylose content were observed among the four rice cultivars. There was no significant difference in the amylopectin chain length distribution among the cultivars. Water absorptions of rice grains during soaking were completed between 30 and 40 min, with Haiami showing the slowest absorption. Significant differences in the viscosity properties of rice flour were found by a Rapid Visco Analyser. Baegjinju with low amylose content had the highest viscosity in paste breakdown. According to the DSC results of rice starches, there were significant differences in the onset, peak and conclusion temperatures of the endothermic peak. Gelatinization enthalpy showed energy content changes between 4.20 and 6.97 J/g, with the lowest change in Haiami. Texture properties of cooked rice were assessed using a Texture Analyzer, which showed that the hardness of cooked rice was decreased with soaking than without soaking. However, this finding was not applicable for Haiami rice.

연사방법에 따른 아세테이트/기능성 폴리에스터 복합사의 염색성에 관한 연구 (Dyeing Properties of Acetate/Functional Polyester Composite Yarn in Different Yarn Twisting Processes)

  • 김소진;전동원;박영환
    • 한국의류학회지
    • /
    • 제30권2호
    • /
    • pp.255-265
    • /
    • 2006
  • The purpose of this study was to examine the dyeing properties of four kinds of composite yams that were twisted in different processes. The composite yarns consist of acetate and functional polyester in ratio of 70 : 30. The composite yams were dyed at 100$^{circ}C$ and 125$^{circ}C$ using three types of dyes, disperse dyes for acetate fiber, PET fiber and PET-acetate blended fiber, in the three primary colors. The exhaustion($\%$) and K/S value were observed for each case. Also the effects of four different twisting processes to dyeing properties and physical properties were examined. Regardless of twisting methods, the composite yarns that were dyed at 125$^{circ}C$ had higher exhaustion($\%$) than those were dyed at 100$^{circ}C$ with all three types of dyes; However, tendency of the K/S value after reduction cleaning process was measured at 100$^{circ}C$ and the value measured 125$^{circ}C$ had a great difference with disperse dyes for acetate and dyes for PET. The difference of the K/S values of composite yarns, when dyed at 100$^{circ}C$ and 125$^{circ}C$ with disperse dyes for PET-acetate blended fiber, was almost negligible. According to twisting methods K/S values were in the following order: AP1 > AP3 > AP4> AP2. This means that AP1, treated at 220$^{circ}C$, had the highest K/S value and K/S value becomes higher as the yam is higher twisted and becomes lower as lower twisted. On the other hand, the dry shrinkage and wet shrinkage showed low shrinkage rate when the twist was high and steam setting temperature was high.

Physicochemical Characteristics of Starches in Rice Cultivars of Diverse Amylose Contents

  • Yoon, Mi-Ra;Chun, A-Reum;Oh, Sea-Kwan;Hong, Ha-Cheol;Choi, Im-Soo;Lee, Jeong-Heui;Cho, Young-Chan;Kim, Yeon-Gyu
    • 한국작물학회지
    • /
    • 제57권3호
    • /
    • pp.226-232
    • /
    • 2012
  • Through the sampling four rice cultivars with differing amylose contents, the relationship between the structural and gelatinization properties of endosperm starches was analyzed. These rice varieties exhibited different chain length distribution ratio within the amylopectin cluster as well as varing amylose levels. The proportion of amylopectin short chains of in Goami cutlivars was higher than the other varieties, whereas the Goami 2 which shows amylose extender mutant properties in the endosperm showed the highest proportion of long chains. In X-ray diffraction analysis of rice starches, the Goami 2 variety displayed a B-type pattern whereas the other varieties were all A-type. Among the cultivars with high and normal rice starch levels, those with the higher amylose contents showed distinctly lower swelling. Goami 2 rice was found to have the highest onset and peak gelatinization temperature from the differential scanning calorimetry results. The four rice cultivars under analysis also showed different rates of hydrolysis by amyloglucosidase. These findings suggest that the composition and chemical structure of the starch content is a major determinant of both the gelatinization and functional properties of rice.

Identification of Coccoidal Bacteria in Traditional Fermented Milk Products from Mongolia, and the Fermentation Properties of the Predominant Species, Streptococcus thermophilus

  • Ren, Yan;Liu, Wenjun;Zhang, Heping
    • 한국축산식품학회지
    • /
    • 제35권5호
    • /
    • pp.683-691
    • /
    • 2015
  • The objective of this study was to identify the coccoidal bacteria present in 188 samples of fermented yaks’, mares’ and cows’ milk products collected from 12 different regions in Mongolia. Furthermore, we evaluated the fermentation properties of ten selected isolates of the predominant species, Streptococcus (S.) thermophiles, during the process of milk fermentation and subsequent storage of the resulting yoghurt at 4℃. Overall, 159 isolates were obtained from 188 samples using M17 agar. These isolates were presumed to be lactic acid bacteria based on their gram-positive and catalase-negative properties, and were identified to species level using 16S rRNA gene sequence analysis. These coccoid isolates were distributed in four genera and six species: Enterococcus (E.) durans, Enterococcus (E.) faecalis, Lactococcus (Lac.) subsp. lactis, Leuconostoc (Leuc.) lactis, Leuconostoc (Leuc.) mesenteroides. subsp. mesenteroides and S. thermophilus. Among these S. thermophilus was the most common species in most samples. From evaluation of the fermentation characteristics (viable counts, pH, titratable acidity [TA]) of ten selected S. thermophilus isolates we could identify four isolates (IMAU 20246, IMAU20764, IMAU20729 and IMAU20738) that were fast acid producers. IMAU20246 produced the highest concentrations of lactic acid and formic acid. These isolates have potential as starter cultures for yoghurt production.

다단계 냉간 압연된 고탄소강 와이어의 미세조직 및 기계적 특성에 미치는 패스스케줄의 영향 (Effect of Pass Schedule on the Microstructures and Mechanical Properties of Multi-step Cold Rolled High Carbon Steel Wires)

  • 우동혁;이욱진;박익민;박용호
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.320-326
    • /
    • 2011
  • Flat rolling of wire is an industrial process used to manufacture electrical flat wire, medical catheters, springs, piston segments and automobile parts, among other products. In a multi-step wire flat rolling process, a wire with a circular crosssection is rolled at room temperature between two flat rolls in several passes to achieve the desired thickness to width ratio. To manufacture a flat wire with a homogeneous microstructure, mechanical and metallurgical properties with an appropriate pass schedule, this study investigated the effect of each pass schedule (1stand ~ 4stand) on the microstructures, mechanical properties and widths of cold rolled high carbon steel wires using four-pass flat rolling process. The evolutions of the microstructures and mechanical properties of the widths of cold rolled wires during three different pass schedules of the flat rolling process of high carbon wires were investigated, and the results were compared with those for a conventional eight-pass schedule. In the width of cold rolled wires, three different pass schedules are clearly distinguished and discussed. The experimental conditions were the same rolling speed, rolling force, roll size, tensile strength of the material and friction coefficient. The experimental results showed that the four-pass flat cold rolling process was feasible for production of designed wire without cracks when appropriate pass schedules were applied.

Influence of heat treatment on the microstructure and the physical and mechanical properties of dental highly translucent zirconia

  • Dimitriadis, Konstantinos;Sfikas, Athanasios Konstantinou;Kamnis, Spyros;Tsolka, Pepie;Agathopoulos, Simeon
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권2호
    • /
    • pp.96-107
    • /
    • 2022
  • PURPOSE. Microstructural and physico-mechanical characterization of highly translucent zirconia, prepared by milling technology (CAD-CAM) and repeated firing cycles, was the main aim of this in vitro study. MATERIALS AND METHODS. Two groups of samples of two commercial highly-translucent yttria-stabilized dental zirconia, VITA YZ-HTWhite (Group A) and Zolid HT + White (Group B), with dimensions according to the ISO 6872 "Dentistry - Ceramic materials", were prepared. The specimens of each group were divided into two subgroups. The specimens of the first subgroups (Group A1 and Group B1) were merely the sintered specimens. The specimens of the second subgroups (Group A2 and Group B2) were subjected to 4 heat treatment cycles. The microstructural features (microstructure, density, grain size, crystalline phases, and crystallite size) and four mechanical properties (flexural strength, modulus of elasticity, Vickers hardness, and fracture toughness) of the subgroups (i.e. before and after heat treatment) were compared. The statistical significance between the subgroups (A1/A2, and B1/B2) was evaluated by the t-test. In all tests, P values smaller than 5% were considered statistically significant. RESULTS. A homogenous microstructure, with no residual porosity and grains sized between 500 and 450 nm for group A and B, respectively, was observed. Crystalline yttria-stabilized tetragonal zirconia was exclusively registered in the X-ray diffractograms. The mechanical properties decreased after the heat treatment procedure, but the differences were not statistically significant. CONCLUSION. The produced zirconia ceramic materials can be safely (i.e., according to the ISO 6872) used in extensive fixed prosthetic restorations, such as substructure ceramics for three-unit prostheses involving the molar restoration and substructure ceramics for prostheses involving four or more units. Consequently, milling technology is an effective manufacturing technology for producing zirconia substructures for dental fixed all-ceramic prosthetic restorations.

Classification and Spatial Variability Assessment of Selected Soil Properties along a Toposequence of an Agricultural Landscape in Nigeria

  • Fawole Olakunle Ayofe;Ojetade Julius Olayinka;Muda Sikiru Adekoya;Amusan Alani Adeagbo
    • Journal of Forest and Environmental Science
    • /
    • 제39권3호
    • /
    • pp.180-194
    • /
    • 2023
  • This study characterize, classify and evaluates the function of topography on spatial variability of some selected soil properties to assist in designing land management that support uniform agricultural production. The study site, an agricultural land, was part of the derived savanna zone in southwest Nigeria. Four soil profile pits each were established along two delineated toposequence and described following the FAO/UNESCO guidelines. Samples were collected from the identified genetic horizons. Properties of four soil series developed on different positions of the two delineated Toposequence viz upper, middle, lower slopes and valley bottom positions respectively were studied. The soil samples were analysed for selected physical and chemical properties and data generated were subjected to descriptive and inferential statistics. The results showed that soil colour, depth and texture varied in response to changes in slope position and drainage condition. The sand content ranged from 61 to 90% while the bulk density ranged between 1.06 g cm-3 to 1.68 g cm-3. The soils were neutral to very strongly acid with low total exchangeable bases. Available phosphorus value were low while the extractable micronutrient concentration varied from low to medium. Soils of Asejire and Iwo series mapped in the study area were classified as Typic isohyperthermic paleustult, Apomu series as Plinthic isohyperthermic paleustult and Jago series as Aquic psamment (USDA Soil Taxonomy). These soils were correlated as Lixisol, Plinthic Lixisol and Fluvisol (World Reference Based), respectively. Major agronomic constraints of the soils associations mapped in the study area were nutrient availability, nutrient retention, slope, drainage, texture, high bulk density and shallow depth. The study concluded that the soils were not homogenous, shows moderate spatial variation across the slope, had varying potentials for sustainable agricultural practices, and thus, the agronomic constraints should be carefully addressed and managed for precision agriculture.

A study on electrical and thermal properties of conductive concrete

  • Wu, Tehsien;Huang, Ran;Chi, Maochieh;Weng, Tsailung
    • Computers and Concrete
    • /
    • 제12권3호
    • /
    • pp.337-349
    • /
    • 2013
  • Traditional concrete is effectively an insulator in the dry state. However, conductive concrete can attain relatively high conductivity by adding a certain amount of electronically conductive components in the regular concrete matrix. The main purpose of this study is to investigate the electrical and thermal properties of conductive concrete with various graphite contents, specimen dimensions and applied voltages. For this purpose, six different mixtures (the control mixtures and five conductive mixtures with steel fibers of 2% by weight of coarse aggregate and graphite as fine aggregate replacement at the levels of 0%, 5%, 10%, 15% and 20% by weight) were prepared and concrete blocks with two types of dimensions were fabricated. Four test voltage levels, 48 V, 60 V, 110 V, and 220 V, were applied for the electrical and thermal tests. Test results show that the compressive strength of specimens decreases as the amount of graphite increases in concrete. The rising applied voltage decreases electrical resistivity and increases heat of concrete. Meanwhile, higher electrical current and temperature have been obtained in small size specimens than the comparable large size specimens. From the results, it can be concluded that the graphite contents, applied voltage levels, and the specimen dimensions play important roles in electrical and thermal properties of concrete. In addition, the superior electrical and thermal properties have been obtained in the mixture adding 2% steel fibers and 10% graphite.