• Title/Summary/Keyword: foundry

Search Result 1,778, Processing Time 0.023 seconds

An Experimental Study on the Freeze-Thaw Resistance of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 동결-융해 저항성에 관한 실험적 연구)

  • Yong, Suk-Ung;Lee, Joo-Hyung;Hong, Chang-Woo;Yun, Kyong-Ku;Park, Je-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.117-122
    • /
    • 1998
  • Concrete structures has been deteriorated by the freezing and thawing due to temperature gap. This study was conducted to evaluate durabilite of concrete which are increasingly demanded recently. Therefore the research of durability must be executed for application of waste foundry sand concrete real structures. Concrete durability must be executed for application of waste foundry sand concrete real structures. Concrete durability properties incorporating waste foundry sand was performed with the variable of W/C ratio, Sand/Waste foundry sand ratio and Air entrainment-Non air entrainment. Cylinder specimens were made and subjected to freezing and thawing cycle at $-18^{\cire}C$ and $4^{\cire}C$. Dynamic modulus of elasticity were evaluated as F/T cycle increase. The results show that strength of concrete is increased the W/C ratio decrease, the Sand/Waste foundry sand ratio increase when the concrete contains AE agent and decreasing WC ratio and AE concrete makes improved resistance of freezing and thawing improved. Especially, resistance of freezing and thawing is improved by Fine aggregate/Waste foundry sand ratio which is 50%, 25%, 0% in a row. Therefore it is turn out the waste foundry sand could be applied to concrete from the experiment.

  • PDF

An analysis of the properties of mortar according to the change of the replacement rate of waste foundry sands (폐주물사의 치환율 변화에 따른 모르타르의 특성 분석)

  • Ryu, Hyun-Gi;Kwon, Yong-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.99-104
    • /
    • 2009
  • For recycling of waste foundry sands, researchers recently try to recycle them rather than depend on reclamation, and are studying on how to combine waste foundry sands with cement and use them for various kinds of construction material as the effective recycling method of waste foundry sand. In this research, The ways to find the proper replacement rate of waste foundry sands and to make use of them were suggested through the experiments on the range to apply waste foundry sands with two levels of 1:3 mixture rate of W/C 43% and 50%. The research result showed that in terms of liquidity as the characteristic of unhardened mortar, as the replacement rate of waste foundry sands increased, its flow tended to decrease. The amount of air also displayed a similar tendency to that of liquidity in that the higher the replacement rate of waste foundry sands became, the lower it became. With regard to the solidity trait of hardened mortar, it increased when the waste foundry sands were replaced more, and the replacement of waste foundry sands caused increased initial solidity. As for the amount of water permeated and that of water absorbed as the water tight proofing properties, the amount of permeated water was proved to decrease because of the gap recharge effect by the fine powder of waste foundry sands, and the replacement of waste foundry sands in the structures requiring watertightness is concluded to be very effective.

  • PDF

Fundamental Properties of Concrete Using Casting Foundry Fly Ash as an Admixture (주물공장 플라이애쉬를 혼화재로 사용한 콘크리트의 기초적 성질)

  • 김희성;진치섭
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.87-94
    • /
    • 2000
  • Disposal of casting foundry fly ash generally depends on reclamation up to the present. This is the great loss from a standpoint of saving resources and utilizing industrial wastes. Therefore, a study on the reuse of fly ash as a substitute material for construction is necessary in order to utilize industrial wastes, to reduce cost and improve quality in producing concrete products, and to protect environment from pollution. In this study, methods for the reuse of the casting foundry fly ash, industrial wastes products, as an admixture for concrete are discussed. For this purpose, fly ash was extracted from casting foundry and tests of physical and chemical properties are executed. Also, various characteristics of concrete using fly ash as an admixture are experimented. Finally, the reuse methods for casting foundry fly ash are presented.