• Title/Summary/Keyword: foundation displacement

Search Result 457, Processing Time 0.028 seconds

An Analysis of Stresses and Behaviors in the Geotextile-Reinforced Soil Structures (토목섬유 보강 구조물의 응력 및 거동 해석)

  • 고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.94-108
    • /
    • 1988
  • The use of geotextile as reinforcing materials in soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, roadbed, embankment stabilization and especially reinforcement of soft foundation, and so on, In the past, however, its design and construction have been performed empirically. In this study, laboratory model tests were carried out in order to investigate the effects of geotextile rein- forcement on vertical and horizontal displacement and other characteristics in soft founda- tions. The experiments were executed in eight treatments ;no geotextile between embank - ment and subsoils, and seven geotextiles with different tensile strength. And such factors as the loading conditions, the tensile strength of geotextiles, the ingredient of geotextiles and the elapsed time were investigate in this study. And the analytical method were executed in order to study the stress and behavior of geotextile - reinforced soil structure by the nonlinear elasto - plastic finite element model. The following conclusions were drawn from this study. 1. Geotextile reinforcement reduced the effects of banking loads on subsoils more effectively with the increase of their tensile strength. 2. As the tensile strength of geotextiles was increase, the rate of the initial vertical disp - lacements of loading plate was reduced inverse proportional to loads, Rowever, the effect of loading was reduced when the loads exceed a certain limits, 3. The effect of reinforcement of nonwoven geotextile was 1.5-4.5 times larger than that of the woven geotextile with equivalent tensile strength. 4. The increased bearing capacity and the reduced settlement are proportioned as the tensile strength of geotextile. 5. The settlement at the long time loading were developed almost all, were completed after 10 days and the additional settlement were not developed since then. 6. The nonlinear elasto - plastic finite element method are accurate to predict the stresses and behayior of geotextile - reinforced soil structures.

  • PDF

A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations

  • Meksi, Abdeljalil;Benyoucef, Samir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1215-1240
    • /
    • 2015
  • In this work, a novel simple first-order shear deformation plate theory based on neutral surface position is developed for bending and free vibration analysis of functionally graded plates and supported by either Winkler or Pasternak elastic foundations. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Numerical results of present theory are compared with results of the traditional first-order and the other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending and free vibration behaviors of functionally graded plates.

Design of Pile Foundations Considering Negative Skin Friction (부마찰력을 고려한 말뚝기초 설계)

  • Kim Ju-Hyong;Kwon Oh-Sung;Kim Myoug-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.65-74
    • /
    • 2005
  • The negative skin friction on piles, which are installed in currently consolidating soft deposits, creates significant problems on the stability of pile foundations. This study investigated whether or not the pile foundation designs were appropriate in soft deposits with large amount of consolidation settlement. The final settlements of the grounds along the pile depth were estimated by the soil parameters obtained from the laboratory tests and by the field-measured settlement curves, if they were available. The displacement of the piles along the pile depth was estimated by both the load transfer method and the numerical method. Both methods gave similar locations of neutral planes and magnitudes of the maximum axial forces on the piles. The movements of the ground and the piles were compared to calculate the down drag acting on piles. For the piles whose bearing capacities were less than the design loads including the down drag, slip layer coatings and/or incrementing of the pile penetration depth into the bearing stratum were proposed to improve the pile capacities.

Application of Soil-Cement Piles to the Ground Improvement of Harbor Structures (소일-시멘트 파일을 이용한 항만구조물의 말뚝식 지반개량 적용성)

  • Lee, Seong-Hun;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.29-47
    • /
    • 2013
  • This study undertook research on the sections of 90 harbor structures which applied a pile-type soil improvement using the soil-cement pile and then, determined the minimum replacement rate for each section, showing sufficient stability in all relevant studies including numerical analysis. The reliability of the numerical analysis was verified by a centrifuge model test. As a result of the study, it was revealed that when the foundation soil is too soft ($s_u$ = under 15 kPa), it is unsuitable to apply a pile-type ground improvement to a soil improvement regardless of types of super structures. And a pile-type soil improvement was found to be suitable for a harbor structure with the relative stiffness ratio (n) of less than 50~75 at a maximum and the 2~3 MPa strength of the soil-cement pile. Furthermore the governing factor for the minimum replacement rate for the pile-type soil improvement was turned out to be the allowable horizontal displacement. Therefore, the primary review to see the applicability of the pile-type soil improvement requires the evaluation of horizontal displacements.

Analysis of Semi-Rigid Connections on 3D Floating Structures (3차원 플로팅 구조물의 반강접 접합부 해석)

  • Park, Jong-Seo;Song, Hwa-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.175-180
    • /
    • 2012
  • The shape of floating superstructure is the same as other buildings, but the foundation is based not on land but on a floating body. Unlike inland structures, they are largely influenced by the wave load. Deformation of the floating pontoon due to the wave loads affects the connection, which in turn causes problems related to the habitability and safety to the superstructure users. Accordingly, this study conducted elastic analysis regarding rigid connection and semi-rigid connection by the integration analysis that combined together the superstructure and pontoon of the 3-D floating structure. Moreover, this study investigated the results of the separation analysis excluding pontoon and the integration analysis. In addition, elasticity analysis was used to divide up the wave loads cases, and to classify the moment and displacement of the structure depending on connection following the changes in the wave loads.

A Parametric Study of Sheet Pile Wall Near the Laterally Loaded Pile (횡방향 재하 말뚝 주변의 널말뚝에 관한 변수연구)

  • Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.35-43
    • /
    • 2012
  • Construction of sheet pile retaining walls in urban and coastal regions has resulted in sheet pile walls in close proximity to laterally loaded pile foundations. However, there is currently little information available in the literature to assist engineers for quantifying the response of sheet pile walls. This study provides a quantitative method for estimating sheet pile wall response due to loads imposed from a nearby laterally loaded pile. Three dimensional finite element analyses using commercial software, ABAQUS, were performed to assess the response of a sheet pile wall and nearby laterally loaded pile. The soils were modeled using Drucker-Prager constitutive model with associated flow rule, and the sheet pile wall and pile foundation were assumed to behave linear elastic. Four parameters were investigated: sheet pile wall bending stiffness, distance from the pile face to the wall, excavation depth in front of the sheet pile wall, and elastic modulus of the soil. Results from the analyses have been used to develop preliminary design charts and simple equations for estimating the maximum horizontal displacement and maximum bending moment in the sheet pile wall.

READY MADE Creative Gymnastic for Designers (READY MADE디자이너를 위한 창조적인 훈련 연구)

  • Bruno, Marco
    • Archives of design research
    • /
    • v.19 no.2 s.64
    • /
    • pp.365-374
    • /
    • 2006
  • A 'Readymade' is an everyday object selected and designated as art. The term was coined by Marcel Duchamp to describe his artistic process based on the attempt to destroy the notion of the uniqueness of the art object: his influence went for beyond the art world affecting all design activities based on creativity. The purpose of this study is to investigate the ready-made technique from an educational point of view. Starting from Duchamp experience and his further influence on the design world, the study aims to demonstrate the value of the ready-made technique as a basic element in the education of young designers. The research method is based on the empirical observation of the results of the same project assigned to forty different students in different universities. The collected results were grouped in four families according to each specific generative method: constructive, conceptual, aggregative and elaborative. These four categories, derived by the observation of the results, represent tangible variations of the same disciplined technique. This flexibility demonstrates the value of the ready-made process as a foundation practice particularly indicated for young designers. These are the main skills students developed through its application to design projects; exploring and reconsidering attitude, recycling issues, new identity to familiar objects, focus on ideas.

  • PDF

Seismic Performance of the Framed Apartment Building Structure with Damping System (감쇠시스템을 적용한 라멘조 아파트의 내진성능평가)

  • Chun, Young-Soo;Lee, Bum-Sik;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • To proactively respond to internal and external changes such as the recent demographic change and rising demand for diversified housing types, this study investigated the framed-structure free plan public house model proposed by the LH to look at the seismic performance of framed-structure apartment according to damper system use through non-linear analysis. The effectiveness thereof was also examined in terms of performance and economy. As a result, the proposed damper system application method to framed-structure free plan public house model was found to meet the performance requirements of the present earthquake-resistant design (KBC2016) and effective to apply to designs. The max response displacement and max response acceleration were compared based on the nonlinear analysis. As a result, the building with damper system showed better earthquake resistance performance than earthquake-resistant structure thanks to the damper system, although the base shear of earthquake-resistant system was reduced by 20% in design. The damper system is expected to help reduce building damage while ensuring excellent earthquake resistance performance. In addition, the framework quantities of earthquake-resistant structure and structure with damping system were compared. As a result, columns were found to reduce concrete amount by about 3.9% and rebar, by about 7.3%. Walls showed about 12.6% reduction in concrete and about 10.7% in rebar. In terms of cost, framework construction cost including formwork and foundation expenses was expected to drop by about 5~6%.

Numerical Analysis of Behavior of Ground Near LNG Tank Foundation Under Scenario of LNG Leakage (LNG 탱크에서 천연가스 유출시 얕은 기초 주변 지반거동의 수치해석적 분석)

  • Kim, Jeongsoo;Kim, Youngseok;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.81-92
    • /
    • 2018
  • Recently, the use of natural gas has steadily increased due to its economical advantage and increased demand of clean energy uses. Accordingly, construction of LNG storage tanks is also increased. Secure of the stability of LNG tanks storage requires high technology as natural gas is stored in a liquid state for efficiency of storage. When a cryogenic LNG fluid leaks on ground due to a defect in LNG tank, damage is expected to be significant. Many researchers evaluated the critical and negative effects of LNG leakage, but there is limited research on the effect of cryogenic fluid leakage on the ground supporting LNG tanks. Therefore, in this study, the freezing expansion of the ground during cryogenic LNG fluid leakage was evaluated considering various outflow situations and ground conditions. The LNG leakage scenarios were simulated based on numerical analyses results varying the surcharge load, temperature boundary conditions, and soil types including freeze-sensitive soil. Consequently, short and long term ground temperature variations after LNG leakage were evaluated and the resulting ground behavior including vertical displacement behavior and porosity were analyzed.

Development of an accelerated life test procedure considering the integrated equivalent load of an implement working pump for an agricultural tractor

  • Moon, Seok-Pyo;Baek, Seung-Min;Chung, Sun-Ok;Park, Young-Jun;Han, Tae-Ho;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1123-1134
    • /
    • 2020
  • The goal of this study was to develop an accelerated life test for an implement working pump for an agricultural tractor. The field experiments were conducted to measure the load of an implement working pump during major agricultural operations such as plow tillage, rotary tillage, baler operations, and wrapping operations. The measurement system for an implement working pump load was constructed using a pressure sensor, the engine rotational speed, and the hitch pump displacement. The measured implement working pump load was calculated as an equivalent load for each agricultural operation using the Palmgren-Miner rule, which is a cumulative damage method. The equivalent load was calculated using the total load data and peak load data when the total data included the operation of an implement working. The annual usage time of the agricultural tractor was applied to develop two integrated equivalent loads. The acceleration factor was calculated to develop an accelerated life test and was calculated from the two integrated equivalent loads, the maximum pressure, and the flow rate conditions of the hitch pump. In Korea, the warranty life of a tractor is 2,736 hours, and the time required for the test to guarantee the operational life of tractors was calculated as 7,561 hours. The acceleration factors were calculated as 453.6 and 38.3, respectively, from the total load data and peak load data. The fatigue test time can be shortened by 16.7 and 197.4 hours according to the result of the acceleration factors.