• Title/Summary/Keyword: foundation displacement

Search Result 457, Processing Time 0.027 seconds

Nonlinear Seismic Analysis of Steel Structure Buildings Considering the Stiffnesses of the Foundation-Soil System (기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석)

  • Oh, Young-Hee;Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.137-144
    • /
    • 2005
  • Seismic responses of a building are affected due to the site soil conditions. In this study, linear time history seismic analysis and nonlinear pushover static seismic analysis were performed to estimate the base shear forces of the 3, 5 and 7-story steel structure buildings considering the rigid and soft soil conditions. According to the study results, the steel structure buildings designed for the gravity loads and wind load showed the elastic responses with the moderate earthquake of 0.11g, and the soft soil layer increased the displacement and the base shear force of a building. Therefore it is more resonable to perform an elastic seismic analysis of a building structure with the moderate earthquakes considering the characteristics of the soft soil layer.

  • PDF

A Study on Increase of Bearing Capacity of Dense Sandy Ground installed by Vertical Micropiles (연직 마이크로파일이 설치된 조밀한 모레지반의 지지력 증가에 관한 연구)

  • 최상민;임종철;이태형;공영주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.355-362
    • /
    • 2001
  • Since micropiles were conceived in Italy in the early 1950s, which have been widely used for In-situ reinforcement, bearing pile or the concept of combination in the world-wide. The meaning of micropiles usually differs from that of a general deep foundation. Because the load capacity of it was mainly affected by skin friction. Also, it could be obtained the improvement effects of load capacity or ground's rigidity by the unitary behavior of ground and micropiles. In this study, The model tests were peformed on the dense sand where micropiles are set to the vertical direction. Strip footing was used in it. Steel bars of dia. 2 and 4㎜ were used in model tests of which the sand was attached on the surface, and the length of it was changed as 2B to 6B(where, B is width of strip footing) Through this process, the load capacity were analyzed from the test results in the relationship between load and displacement.

  • PDF

Bending analysis of advanced composite plates using a new quasi 3D plate theory

  • Houari, Tarek;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • In this paper, a refined higher-order shear deformation theory including the stretching effect is developed for the analysis of bending analysis of the simply supported functionally graded (FG) sandwich plates resting on elastic foundation. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The theory presented is variationally consistent, without the shear correction factor. The present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

GENERALIZED THERMO ELASTIC WAVES IN A CYLINDRICAL PANEL EMBEDDED ON ELASTIC MEDIUM

  • Ponnusamy, P.;Selvamani, R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2013
  • In this paper the three dimensional wave propagation in a homogeneous isotropic thermo elastic cylindrical panel embedded in an elastic medium (Winkler model) is investigated in the context of the L-S (Lord-Shulman) theory of generalized thermo elasticity. The analysis is carried out by introducing three displacement functions so that the equations of motion are uncoupled and simplified. A Bessel function solution with complex arguments is then directly used for the case of complex Eigen values. This type of study is important for design of structures in atomic reactors, steam turbines, wave loading on submarine, the impact loading due to superfast train and jets and other devices operating at elevated temperature. In order to illustrate theoretical development, numerical solutions are obtained and presented graphically for a zinc material with the support of MATLAB.

Study of Effect of tunnelling on pile group - Numerical Analysis (터널 굴착이 무리말뚝거동에 미치는 영향에 대한 수치해석연구)

  • Woo, Seung-Je;Choi, Go-Ny;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.96-103
    • /
    • 2010
  • This paper presents of effect of tunneling on pile group of being operated bridge using Three-dimensional numerical modeling to study the effect of coordination of tunneling location under discontinuous group pile. In order to find idealistic tunneling location that causes settlement, change of stress on the piles and movement of soil at a minimum, a fully coupled 3D finite element model is adopted. The study contains pile settlement, axial force on each piles in the group, axial displacement of piles and soil behaviour caused by tunneling. Based on the result some insights into the pile behavior due to tunneling obtained from numerical analysis were mentioned and discussed.

  • PDF

A study on determining the minimum vertical spring stiffness of track pad considering running safety. (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim Jeong-ll;Yang SinChu;Kim Yun-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.842-847
    • /
    • 2004
  • This study presents the minimum spring stiffness of resilient track pad considering the safety of running train. A nonlinear static 3-D finite element is used for the modeling of railway superstructure, especially for the reflection of nonlinear resistance of rail fastening system. Moreover, ballast is considered as an elastic foundation. As the input load, eccentric wheel and lateral force are used and they are derived from ' Lateral-force/Wheel-load Estimation Equations '. Analysis results are compared with following two values : allowable lateral displacement of rail head (derived from the geometrical derailment evaluation of wheel/rail) and operation standard value (derived from the field test results of track).

  • PDF

Development of Analytical Two Dimensional Infinite Elements for Soil-Structure Interaction Analysis (지반-구조물의 상호작용 해석을 위한 해석적 2차원 무한요소)

  • 윤정방;김두기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.19-26
    • /
    • 1997
  • In this paper, two dimensional analytical infinite elements which can include multiple wave components to model a underlying half-space are developed. Since these elements are expressed clearly and simply using Legendre polynomials of frequencies in frequency domain, these are very economical and efficient in computing the responses of strip foundations in frequency domain and are easily transformed for SSI analysis in time domain. To prove the behavior of the proposed two dimensional analytical infinite elements, vertical, horizontal, and rocking compliances of a rigid strip foundation in layered soils are analyzed and compared with those of Tzong ' Penzie $n^{(17)}$ and with those which calculated by numerical infinite elemen $t^{(1)}$ in frequency domain, and good agreements are noticed between them. As an application for a further study, a new scheme for SSI analysis in time domain are proposed and verified by comparing the displacement responses of the soil with a underlying rock due to a rectangular impulse loading with those of a soil modeled extended FE meshes.soil modeled extended FE meshes.

  • PDF

Seismic analysis of dam under different upstream water levels

  • Bhatnagar, Shashank;Kranthikumar, A;Sawant, VA
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.265-274
    • /
    • 2016
  • The present paper describes the results of numerical modeling of a dam founded on loose liquefiable deposit using PLAXIS-3D finite element software. Effect of a different dam water level on parameters like displacements, Excess Pore water pressures, Liquefaction potential and Accelerations is studied. El- Centro earthquake motion is applied as input earthquake motion. The results of this study show that different upstream dam water level greatly affects the displacements, excess pore pressure and displacement tendency of the underlying foundation soils and the dam.

A study of hydroelastic behavior of hinged VLFS

  • Sun, Yonggang;Lu, Da;Xu, Jin;Zhang, Xiantao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.170-179
    • /
    • 2018
  • This paper introduces a new method to study the hydroelastic behavior of hinged Very Large Floating Structures (VLFSs). A hinged two-module structure is used to confirm the present approach. For each module, the hydroelasticity theory proposed by Lu et al. (2016) is adopted to consider the coupled effects of wave dynamics and structural deformation. The continuous condition at the connection position between two adjacent modules is also satisfied. Then the hydroelastic motion equation can be established and numerically solved to obtain the vertical displacement, force and bending moment of the hinged structure. The results calculated by the present new method are compared with those obtained using three-dimensional hydroelasticity theory (Fu et al., 2007), which shows rather good agreement.

Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • In this article the frequency response of magneto-flexo-electric rotary porous (MFERP) nanobeams subjected to thermal loads has been investigated through nonlocal strain gradient elasticity theory. A quasi-3D beam model beam theory is used for the expositions of the displacement components. With the aid of Hamilton's principle, the governing equations of MFERP nanobeams are obtained. Further, administrating an analytical solution the frequency problem of MFERP nanobeams are solved. In addition the numerical examples are also provided to evaluate the effect of nonlocal strain gradient parameter, hygro thermo environment, flexoelectric effect, in-plane magnet field, volume fraction of porosity and angular velocity on the dimensionless eigen frequency.