• Title/Summary/Keyword: fouling mechanism

Search Result 59, Processing Time 0.026 seconds

Application of Pulsed Electric Field Treatment for Scaling Prevention (스케일형성 방지를 위한 펄스 전기장 처리의 적용)

  • Choi, Seung-Pil;Kim, Jong-Oh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.51-56
    • /
    • 2011
  • This study was conducted to investigate the applicability of pulsed electric field (PEF) treatment for the prevention of scaling formation and membrane fouling reduction. To validate the effect of PEF and to identify the mechanism, some experiments with and without PEF treatment were carried out. PEF treatment affected the precipitation of $CaCO_3$ by which $CaCO_3$ particles were actively grown and sedimented. It was confirmed that the calcium ions were decreased as 78% and particle size was grown by PEF treatment. It was also verified that the crystalline structure of $CaCO_3$ was transformed by PEF treatment from Aragonite, which is formed at a high temperature and hard to be removed, to Calcite being stable at room temperature. In PEF treatment, permeate volume and permeation flux were greater than that of without PEF, case while Langelier Index(LI) decreased. From the experiment results, PEF treatment is believed to be an effective method to prevent scaling formation and to mitigate $CaCO_3$ fouling as the pretreatment of membrane filtration.

A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler (석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구)

  • Lee, Jung Eun;Lee, Jae Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.

Effect of Metal Salt Coagulant on Membrane Fouling During Coagulation-UF Membrane Process (응집-UF 막 공정의 적용시 금속염 응집제가 막오염에 미치는 영향)

  • Jung, Chul-Woo;Shim, Hyun-Sool;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.523-528
    • /
    • 2007
  • The objectives of this research are to investigate the mechanism of coagulation affecting UF, find out the effect of metal salt coagulant on membrane fouling. Either rapid mixing + UF or slow mixing + UF process caused much less flux decline. For PACl coagulant, the rate of flux decline was reduced for both hydrophilic and hydrophobic membrane than alum due to higher formation of flocs. In addition, the rate of flux decline for the hydrophobic membrane was significantly greater than for the hydrophilic membrane, regardless of pretreatment conditions. In general, Coagulation pretreatment significantly reduced the fouling of the hydrophilic membrane, but did little decrease the flux reduction of the hydrophobic membrane. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of $Al(OH)_{3(s)}$ increases rapidly. This experimental results pointed out that precipitates of $Al(OH)_{3(s)}$ rather than dissolved Al(III) formation is major factor affecting flux decline for the membrane.

Effect of Water Back-flushing Condition in Hybrid Water Treatment Process of Carbon Fiber Microfiltration Membrane and Photocatalyst (탄소섬유 정밀여과막 및 광촉매 혼성 수처리 공정에서 물 역세척 조건의 영향)

  • Park, Jin Yong;Cho, Gwang Hee
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.216-223
    • /
    • 2012
  • The effect of water back-flushing period (FT) was investigated in hybrid process of carbon fiber microfiltration membrane and photocatalyst for advanced drinking water treatment in this study, and compared with the previous study using alumina ultrafiltration membrane. The FT was changed in the range of 2~10 min with fixed 10 sec of BT. Then, the FT effects on resistance of membrane fouling ($R_f$), permeate flux (J) and total permeate volume ($V_T$) were observed during total filtration time of 180 min. As decreasing FT, $R_f$ decreased and J increased, which was same with the previous result using alumina ultrafiltration membrane. The treatment efficiency of turbidity was high beyond 99.2%, and the effect of FT was not shown on treatment efficiency of turbidity, which was different with the previous result. The treatment efficiency of organic matters was the lowest value of 65.6% at NBF, and it increased as decreasing FT, which was different with the previous result, too. The reason was that the membrane fouling phenomena could show a different mechanism depending on ceramic membrane materials.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

Ceramic based Nanofiltration Membrane for Wastewater Treatment: A Review (폐수처리를 위한 세라믹계 나노여과막: 리뷰)

  • Yeonsoo, Kwak;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.390-400
    • /
    • 2022
  • Nanofiltration (NF) membranes are more popular than reverse osmosis (RO) membranes as they can be operated at much lower pressures for applications in treatment of wastewater from industries like food processing and pharmaceutical as well as municipal sewage water. The separation mechanism in case of NF membranes is based on solution diffusion as well as sieving, for which the crosslinking density of the thin film of the composite membrane is less then RO membrane. Unlike ceramic membranes, membrane fouling is one of the chronic problems that occur during the nanofiltration process in polymeric membranes. Membrane cleaning is done to get rid of reversible as well as irreversible fouling by treatment with sodium hypochlorite. Compared to polymeric membranes, ceramic membranes show higher stability against these agents. In this review different types of ceramic membrane applied wastewater treatment by NF process are discussed.

Effect of Fouling Reducing Additives on Membrane Filtration Resistance of Activated Sludge (막오염 감소제가 활성슬러지의 여과저항에 미치는 영향)

  • Chung, Tai Hak;Lee, Jong Hoon;Kim, Hyoung Gun;Bae, Young Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.406-413
    • /
    • 2012
  • Effect of three additives, chitosan, ferric chloride, and MPE50 on membrane fouling reduction was studied. They were introduced with various dosing rate into activated sludge, and changes in filtration resistance measured by the batch cell filtration test were evaluated. Both the filtration resistance and the specific cake resistance were minimized at 20 mg/g-MLSS with chitosan, 70 mg/g-MLSS with ferric chloride, and 20 mg/g-MLSS with MPE50 addition, respectively. Introduction of the additives into the activated sludge resulted in reduction of not only cake resistance, but also fouling resistance. However, the chitosan addition to three different activated sludge resulted in three different optimal dose of 10, 20, 30 mg/g-MLSS, respectively. This implies that the optimal dose is dependent on sludge characteristics rather than a constant value. Overdose above the optimal dosage always aggravated filterability in all cases. Zeta potential of sludge flocs, relative hydrophobicity, floc size distribution, soluble EPS concentration and supernatant turbidity were measured in order to analyze fouling reduction mechanism. Nearly neutral surface charge along with the largest particle size was observed at the optimal dose. This could be explained by particle destabilization and restabilization mechanism as positively charged additives were injected into sludge flocs of negative surface charge. Both soluble EPS concentration and supernatant turbidity also showed the lowest value at the optimal dose. These foulants are believed to be coagulated and entrapped in sludge flocs during flocculation. Chitosan and MPE50 which are cationic polymeric substances showed higher reduction in both soluble EPS and fine particles comparing with ferric chloride.

Behavior of Soluble Microbial Products in a Submerged Membrane Separation Activated Sludge Process (침지형 막분리 활성오니법에 있어서 생물대사성분의 거동)

  • Cha, Gi-Cheol;Lee, Dong-Yeol;Shim, Jin-Kie;Lee, Yong-Moo;Yoo, Ik-Keun;Ann, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.959-970
    • /
    • 2000
  • A laboratory-scale experiment was conducted to investigate the effect of soluble microbial products(SMP) on permeate flux in the submerged membrane separation activated sludge process. Continuous and batch filtration test were operated to understand mechanism of relationship between membrane fouling and SMP. Synthetic wastewater(phenol) was used as a carbon source. Hydraulic retention time(HRT) and mixed-liquor volatile suspended solids(MLVSS) of the reactor were kept at 12 hours and 9.000mg VSS/L, respectively. Batch filtration tests ($J_{60}/J_o$) using the mixed liquor from reactor showed that the increase of accumulated SMP concentration in the reactor caused to the decreasing permeate flux and the increasing of the adhesion matters which form cake and gel layer. The resistance value of cake layer was measured $2.9{\times}10^{10}{\sim}4.0{\times}10^{10}(1/m)$, this value showed more significant effect on flux drop than that of among other resistance layers. Batch phenol-degradation experiment was conducted to observe SMP type expected $SMP_{nd}$ and $SMP_{e}$ (SMP resulted from endogenous cell decomposition), these are non-biodegradable high molecular weight organic matter and playa significant role in permeate flux drop. Also, SMP concentration was accumulated as increased of HRT against flux drop.

  • PDF

Development and Performance Evaluation of Hull Blasting Robot for Surface Pre-Preparation for Painting Process (도장전처리 작업을 위한 블라스팅 로봇 시스템 개발 및 성능평가)

  • Lee, JunHo;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.383-389
    • /
    • 2016
  • In this paper, we present the hull blasting machine with vision-based weld bead recognition device for cleaning shipment exterior wall. The purpose of this study is to introduce the mechanism design of the high efficiency hull blasting machine using the vision system to recognize the weld bead. Therefore, we have developed a robot mechanism and drive controller system of the hull blasting robot. And hull blasting characteristics such as the climbing mechanism, vision system, remote controller and CAN have been discussed and compared with the experimental data. The hull blasting robots are able to remove rust or paint at anchor, so the re-docking is unnecessary. Therefore, this can save time and cost of undergoing re-docking process and build more vessels instead. The robot uses sensors to navigate safely around the hull and has a filter system to collect the fouling removed. We have completed a pilot test of the robot and demonstrated the drive control and CAN communication performance.

High performance pervaporative desalination of saline waters using Na-X zeolite membrane

  • Malekpour, Akbar;Nasiri, Hamed
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.437-448
    • /
    • 2017
  • A high quality Na-X zeolite membrane was synthesized on a seeded ${\alpha}-alumina$ disc by the secondary growth method. Structural characterization was done by X-ray spectroscopy, FT-IR spectroscopy, SEM and AFM imaging. The performance evaluation of the membrane was firstly tested in separation of glucose/water solutions by pervaporation process. There was obtained a separation factor $182.7{\pm}8.8$, while the flux through the membrane was $3.6{\pm}0.3kg\;m^{-2}\;h^{-1}$. The zeolite membrane was then used for desalination of aqueous solutions consisting of $Na^+$, $Ca^{2+}$, $Cs^+$ and $Sr^{2+}$ because of the importance of these ions in water and wastewater treatments. The effects of some parameters such as temperature and solution concentration on the desalination process were studied for investigating of diffusion/adsorption mechanism in membrane separation. Finally, high water fluxes ranged from 2 up to $9kg\;m^{-2}\;h^{-1}$ were obtained and the rejection factors were resulted more than 95% for $Na^+$ and $Ca^{2+}$ and near to 99% for $Cs^+$ and $Sr^{2+}$. Based on the results, fluxes were significantly improved due to convenient passage of water molecules from large pores of NaX, while the fouling was declining dramatically. Based on the results, NaX zeolite can efficiently use for the removal of different cations from wastewaters.