• Title/Summary/Keyword: fossil wood

Search Result 52, Processing Time 0.023 seconds

Development of Energy Recycling Technology Using Woody Waste (목질계 폐기물의 에너지 자원화 기술 개발)

  • Yoo, Kyun-Seun;Gu, Jae-Hoi;Shun, Do-Won;Choi, Yeon-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.713-716
    • /
    • 2007
  • Interests have been focused to the renewable energy because energy cost of fossil fuel increased and global climate change caused by CO2 evolution became severe. To overcome these problems, it is essential to develop the energy conversion technologies of renewable resources. Therefore, production and utilization state of wood and woody waste was firstly investigated and then various technologies (pyrolysis, gasification, and combustion) converting the wood and woody waste to energy were summarized. Some case studies of woody waste utilization in europe was introduced with the policy of EU countries. Economical aspect of woody waste was compared with the current fossil fuels and the energy policy of wood and woody waste was suggested.

  • PDF

Study of materials Appropriateness and economic feasibility of Wood pellets (목재펠릿의 경제성과 원료 적정성 연구)

  • Kim, Gyeong-Cheol;Kim, Cheol-Hwan;An, Byeong-Il;Lee, Ji-Yeong;Sheikh, Md. Mominul Islam;Yeasmin, Shabina;Park, Hyeon-Jin;Kim, Seong-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.243-249
    • /
    • 2011
  • In the world, burning fossil fuels such as oil, petroleum, gasoline has created the global warming due to especially carbon dioxide gas emission. Therefore, these fossil fuels must be replaced by eco-friendly feadstocks. The wood pellets are one of valuable alternative fuels that can replace oil-based fuels within a short period of time. Unfortunately, there are no enough forest biomass for wood pellets in Korea. Nevertheless, Korea government has been trying to use most of forest biomass generated from the National Forest Management Operation. This does not make sense in an economic point of view.

  • PDF

The Study of Energy Conversion in a 2 Ton/day Waste-wood Fixed Bed Gasifier (2톤/일 고정층 가스화기를 이용한 폐목재의 에너지 전환 연구)

  • Lee, See Hoon;Son, Young Il;Ko, Chang Bok;Choi, Kyung Bin;Kim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.391-395
    • /
    • 2009
  • For the conversion of domestic waste-wood into energy, a fixed bed gasifier ($0.9 m{\times}2.4 m$) having the capacity of 2 ton/day was designed and constructed. The dual knife valve was used to feed waste-wood of which size was 3~5 cm and a rotary stoker system was installed in the bottom of gasifier. The pilot gasification system consisted of feeding system, fixed bed gasifier, gravity fine particle collector, heat exchanger for syngas cooling, ID fan, and cooling tower. The operation temperatures of gasifier were $700{\sim}1000^{\circ}C$ and the concentrations of syngas were CO: 25~40 vol%, $H_2$: 7~12 vol%, $CH_4$: 2~4 vol%, $CO_2$: 12~24 vol%. The calorific value of syngas was $1100{\sim}1500kcal/Nm^3$ and was enough to be applied in the industrial combustor. Also the gas engine was operated by using syngas from biomass gasifier and produced 1~4 kW of power.

Development of Industrial Wood Pellet Boiler with High Safety (안전성이 높은 산업용 목재펠릿 보일러 개발)

  • Chung, Chan Hong;Park, Min Cheol;Lee, Seong Young
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.31-44
    • /
    • 2013
  • Recently, due to the high rise of energy costs and environmental problem issues, much attention has been paid to wood pellets. Wood pellets are produced by compressing woody biomass into cylindrical form. Wood pellets are suitable for use at various scales in industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing two industrial wood pellet boilers with high safety having capacities of 290kW and 440kW. Efficiency has been improved by using a rotating screw bar grate burner. Special attention has been paid to the improvement of the safety of the wood pellet boilers from backfire by adopting a triple protecting system composed of a rotary feeder, an air curtain, and a backfire protecting DC-fan.

Exploration of Alternative Raw materials to Forest Biomass for Pellets (숲가꾸기 산물을 이용한 펠릿의 원료 적성 연구)

  • Kim, Seong-Ho;Kim, Cheol-Hwan;An, Byeong-Il;Lee, Ji-Yeong;Momin, Md.;Yeasmin, Shabina;Park, Hyeon-Jin;Gwak, Hye-Jeong;Kim, Gyeong-Cheol
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.171-178
    • /
    • 2011
  • During the last decades, global warming from the increased amount of greenhouse gases, mainly carbon dioxide has become a major political and scientific issue. Burning fossil fuels (natural gas, coal and oil) releases $CO_2$, which is also a major cause of global warming. Among the clean environment, wood pellets are considered as promising renewable fossil fuels because of clean burning characteristics, reduction of particulate and NOx emission from combustion. In Korea, more than 50% pellets have to be imported every year because of shortage of feedstocks. On the other hand, about 80% of wood pulps are greatly dependent upon overseas products due to limited forest resources. Under this situation, this study explored how efficiently we have to use forest biomass instead of total dependence on wood as raw materials for pellets.

  • PDF

Diversity of Fossil Woods from the Korean Peninsula (한반도에서 산출된 화석목재의 다양성)

  • Kim, Jong-Heon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • In order to understand the broad outline and palaeobotanical significances, the fossil woods from the Korean Peninsula were integrated through the literature surveys. Types and diversity of them are gradually increasing from Mesozoic to Cenozoic, especially increased sharply in Cenozoic. During the Early Mesozoic, six conifer taxa belonging to four genera were described, which corresponds to about 6% of the Daedong flora. Those of the Late Mesozoic are all conifers, consisting of fifteen taxa belonging to seven genera, which corresponds to about 29% of the Nakdong flora. During the Neogene, thirty four taxa belong to sixteen families were described. Those woods mostly consist of dicotyledon and have the greatest diversity compared to other geologic eras, which corresponds to about 83% of the Janggi flora. It is inferred that such a rapid increase of the silicified wood fossils in Neogene are due to the abundant presence of dicotyledon in floral composition and of pyroclastic rocks in strata, which are appropriate for preserving wood as fossils.

Potential Impact of Timber Supply and Fuel-Wood on the Atmospheric Carbon Mitigation : A Carbon Cycle Modeling Approach (목재공급과 연료용 목재가 대기에 축적된 탄소저감에 미치는 잠재적 영향 : 탄소순환모형 접근법)

  • Lyon, Kenneth S.;Lee, Dug Man
    • Environmental and Resource Economics Review
    • /
    • v.19 no.3
    • /
    • pp.597-632
    • /
    • 2010
  • There is general agreement that global warming is occurring and that the main contributor to this probably is the buildup of green house gasses, GHG, in the atmosphere. Two main contributors are the utilization of fossil fuels and the deforestation of many regions of the world. The burning of fossil fuels increases atmospheric carbon while the burning of fuel-wood reducing fossil fuel consumption along with its forest source maintain an atmospheric carbon level. The standing timber in the forests is a carbon sink, as are wood buildings and structures, and fossil fuel in the ground. This paper is designed to examine a number of current issues related to mitigating the global warming problem through forestry. For this purpose, we develop a modeling approach by integrating timber market, fossil fuel market and carbon cycling model. We use discrete time optimal control theory to identify optimal time paths, the laws of motion, and stationary stats solutions of endogenous variables in the model. On the basis of these results, we identify the optimal amounts of subsidies to be provided or taxes to be imposed by the regulatory agency to mitigate atmospheric carbon accumulation. We also present a numerical example to help illustrate the characteristics of variables in the model when the social cost for atmospheric carbon incrementally shifts upward. A surprising result is that the social cost function for atmospheric carbon has a very smaller impact on the optimal rotation period than previous literature suggested.

  • PDF

Analysis of environmental impact of activated carbon production from wood waste

  • Kim, Mi Hyung;Jeong, In Tae;Park, Sang Bum;Kim, Jung Wk
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.117-126
    • /
    • 2019
  • Activated carbon is carbon produced from carbonaceous source materials, such as coconut shells, coals, and woods. In this study, an activated carbon production system was analyzed by carbonization and activation in terms of environmental impact and human health. The feedstock of wood wastes for the system reduced fossil fuel consumption and disposal costs. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was one tonne of wood wastes. The boundary expansion method was applied to analyze the wood waste recycling process for activated carbon production. An environmental credit was quantified by avoided impact analysis. Specifically, greenhouse gases discharged from 1 kg of activated carbon production system by feeding wood wastes were evaluated. We found that this system reduced global warming potential of approximately $9.69E+00kg\;CO_2-eq$. compared to the process using coals. The environmental benefits for activated carbon production from wood wastes were analyzed in contrast to other disposal methods. The results showed that the activated carbon system using one tonne of wood wastes has an environmental benefit of $163kg\;CO_2-eq$. for reducing global warming potential in comparison with the same amount of wood wastes disposal by landfilling.

Development of a High Efficiency Wood Pellet Boiler with Improved Safety (안전성을 고려한 고효율 목재펠릿 보일러 개발)

  • Chung, Chan-Hong;Park, Min-Cheol
    • Journal of Applied Reliability
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • Wood pellet is one of biomass energy fuels, which is produced by compressing woody biomass such as sawdust, planer shavings, and whole-tree removal or tree tops and branches leftover after logging into cylindrical form. Latterly much attention has been paid to wood pellet boiler which is suitable for use at various scales in domestic and industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing a high efficiency wood pellet boiler with 55MJ/h capacity. Efficiency has been improved by using a rotating disk burner with a shorter screw feeder. Special attention has been paid to the improvement of the safety of the wood pellet boiler from backfire by adopting a double protecting system composed of a shutter and an air curtain. The result shows that the efficiencies of the wood pellet boiler are 97.2% and 89.2% based on lower and higher heating values, respectively, at 15.1kW of heating output.

The Performance Improvement of Fuel Cell System by using LH2 Exergy (액체수소의 Exergy를 이용한 연료전지 시스템의 성능향상)

  • Park, Dong Pil;Jeong, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.211-217
    • /
    • 2001
  • From wood to coal and petroleum, mankind has used various fuel. Since using such fuel, mankind has developed power source of mechanism. We obtain numerous power from caloric force. Present energy supply is based on the fossil fuel. Fossil fuel has high energy density and is convenient for transportation and storage. Human being prepared countermeasure of energy economy, high energy efficiency and substitution energy for limits of fossil fuel. High energy efficiency among them is very important. This research will improve total output by physical exergy recovery of $LH_2$-fuel cell system.

  • PDF