• Title/Summary/Keyword: fossil fuel

Search Result 894, Processing Time 0.026 seconds

Acetone, Butanol, Ethanol Production from Undaria pinnatifida Using Clostridium sp. (Clostridium 종을 이용한 미역으로부터 아세톤, 부탄올, 에탄올 (ABE) 생산)

  • Kwon, Jeong Eun;Gwak, Seung Hee;Kim, Jin A;Ryu, Ji A;Park, Sang Eon;Baek, Yoon Seo;Heo, A Jeong;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.236-242
    • /
    • 2017
  • The conversion of marine biomass to renewable energy has been considered an alternative to fossil fuels. Butanol, in particular, can be used directly as a fuel. In this experiment, the brown alga Undaria pinnatifida was selected as a biomass for biobutanol production. Hyper thermal (HT) acid hydrolysis was used as an acid hydrolysis method to produce monosaccharides. The optimal pretreatment conditions for U. pinnatifida were determined as slurry with 10% (w/v) U. pinnatifida content and 270 mM $H_2SO_4$, and heating at $160^{\circ}C$ for 7.5 min. Enzymatic saccharification was carried out with Celluclast 1.5 L, Viscozyme L, and Ultraflo Max. The optimal saccharification condition was 12 U/ml Viscozyme L. Fermentations were carried out for the production of acetone, butanol, and ethanol by Clostridium acetobutylicum KCTC 1724, Clostridium beijerinckii KCTC 1785, and Clostridium tyrobutyricum KCTC 5387. The fermentations were carried out using a pH-control. The optimal ABE fermentation condition determined using C. acetobutylicum KCTC 1724 adapted to 160 g/l mannitol. An ABE concentration of 9.05 g/l (0.99 g/l acetone, 5.62 g/l butanol, 2.44 g/l ethanol) was obtained by the consumption of 24.14 g/l monosaccharide with $Y_{ABE}$ of 0.37 in pH 5.0.

A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis (분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구)

  • Kim, Ingyeom;Nah, In Wook;Park, Sehkyu
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.854-862
    • /
    • 2016
  • As the demand for a clean energy to replace fossil fuel being depleted increases, hydrogen energy is considered as a promising candidate for future energy source. Water electrolysis which produces hydrogen has high energy efficiency and stability but still has a large overpotential for oxygen evolution reaction (OER). In this study, $Co_3O_4$ catalysts with different morphology were prepared by spray pyrolysis from solutions which contain Co precursor and various organic additives (urea, sucrose, and citric acid), followed by post heat treatment. For the catalysts synthesized, X-ray diffraction (XRD) measurements were performed to identify their crystal structure. Morphology and surface shape of the catalysts were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface area and pore volume were examined by nitrogen adsortpion & desorption tests and X-ray photoelectron spectroscopy (XPS) was conducted to confirm nitrogen doping. Linear sweep voltammetry (LSV) was carried out to investigate OER activity of $Co_3O_4$ catalysts. As a result, bare-$Co_3O_4$ which has high surface area and small particle size determined by spray pyrolysis showed high activity toward OER.

Economic and Environmental Assessment of a Renewable Stand-Alone Energy Supply System Using Multi-objective Optimization (다목적 최적화 기법을 이용한 신재생에너지 기반 자립 에너지공급 시스템 설계 및 평가)

  • Lee, Dohyun;Han, Seulki;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.332-340
    • /
    • 2017
  • This study aims to propose a new optimization-based approach for design and analysis of the stand-alone hybrid energy supply system using renewable energy sources (RES). In the energy supply system, we include multiple energy production technologies such as Photovoltaics (PV), Wind turbine, and fossil-fuel-based AC generator along with different types of energy storage and conversion technologies such as battery and inverter. We then select six different regions of Korea to represent various characteristics of different RES potentials and demand profiles. We finally designed and analyzed the optimal RES stand-alone energy supply system in the selected regions using multiobjective optimization (MOOP) technique, which includes two objective functions: the minimum cost and the minimum $CO_2$ emission. In addition, we discussed the feasibility and expecting benefits of the systems by comparing to conventional systems of Korea. As a result, the region of the highest RES potential showed the possibility to remarkably reduce $CO_2$ emissions compared to the conventional system. Besides, the levelized cost of electricity (LCOE) of the RES-based energy system is identified to be slightly higher than conventional energy system: 0.35 and 0.46 $/kWh, respectively. However, the total life-cycle emission of $CO_2$ ($LCE_{CO2}$) can be reduced up to 470 g$CO_2$/kWh from 490 g$CO_2$/kWh of the conventional systems.

Investigation on Properties of Cement Mortar Using Heat Treated Flue Gas Desulfurization Gypsum (열처리된 배연탈황석고를 혼입한 시멘트 모르타르의 물성 연구)

  • Chung, Chul-Woo;Lee, Yong-Mu;Kim, Ji-Hyun;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.497-503
    • /
    • 2016
  • Flue gas desulfurization gypsum is produced from emission process of fossil fuel power plant to remove sulfur dioxide ($SO_2$) from exhaust gas. Production of flue gas desulfurization gypsum in Republic of Korea has been increasing due to the enforced regulations by government agency. Since flue gas desulfurization gypsum has characteristic that is similar to that of natural gypsum, there is a strong possibility for flue gas desulfurization gypsum to replace the role of natural gypsum. However, consumption of such material is still limited, only used for agricultural purposes or to make gypsum boards, it is necessary to expand the use of this material more aggressively. In this research, the chemical and mineralogical properties of flue gas desulfurization gypsum were investigated, and flue gas desulfurization gypsum with heat treatment was used to make cement paste. According to the results, it was found that flue gas desulfurization gypsum used in this experiment was a very high purity gypsum, and shown to have similar property to that of natural gypsum. Heat treating flue gas desulfurization gypsum above $100^{\circ}C$ was shown to bring beneficial effect on both compressive strength and drying shrinkage

Analysis of the Durban Climate Summit and Its Implications to Climate Policies of Korea (제17차 유엔 기후변화 더반 당사국 총회의 평가와 정책적 시사점)

  • Park, Siwon
    • Journal of Environmental Policy
    • /
    • v.11 no.3
    • /
    • pp.149-170
    • /
    • 2012
  • The United Nations Climate Change Conference, Durban 2011, ended on December 12, 2011, 36 hours over its schedule, delivering the Durban Package, which consisted of, inter alia, the extension of the period for Kyoto Protocol term and the launch of Ad-hoc working Group on the Durban Platform for Enhanced Action. Despite the positive progress made in Durban, the future of post-2012 climate regime still seems cloudy. Before the Durban conference, some of Annex I countries with emissions reduction commitment under the Kyoto Protocol's first commitment period openly declared their intention not to participate in the second one, reducing the effectiveness of Durban agreement. Parties to the conference have a long list of difficult issues disturbing the materialization of the new legal agreement in 2020 such as level of mitigation targets of individual countries and legal nature of their commitment. Given this uncertainty, the Korean government should reinforce its domestic climate policies rather than settling in the fact that it remains as a non-Annex I county party under the Durban Agreement due to the extension of the Kyoto Protocol period. Domestically, it needs to continue to raise the public awareness for rigorous climate policies to transit its economy to low carbon pathway which reduces the country's dependency on fossil fuel in the long term. It is also important to implement cost effective climate policies to cope with domestic resistance and international competitiveness. Internationally, its priority would be working for trust-building in the on-going negotiation meetings to encourage meaningful participation of all parties.

  • PDF

A Study on Performance Characteristic and Safety of Alkaline Water Electrolysis System (알카라인 수전해 시스템 성능 특성 및 안전에 관한 연구)

  • PARK, SOON-AE;LEE, EUN-KYUNG;LEE, JUNG-WOON;LEE, SEUNG-KUK;MOON, JONG-SAM;KIM, TAE-WAN;CHEON, YOUNG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.601-609
    • /
    • 2017
  • Hydrogen is a clean, endlessly produced energy and it is easy to store and transfer. So, hydrogen is regarded as next generation energy. Among various ways for hydrogen production, the way to produce hydrogen by water electrolysis can effectively respond to fossil fuel's depletion or climate change. As interest in hydrogen has increased, related research has been actively conducted in many countries. In this study, we analyzed the performance characteristics and safety of water electrolysis system. In this study, we analyzed the performance characteristics and safety of water electrolysis system. The items for safety performance evaluation of the water electrolysis system were derived through analysis of international regulations, codes, and standards on hydrogen. Also, a prototype of the overall safety performance evaluation station was designed and developed. The demonstration test was performed with a prototype $10Nm^3/h$ class water electrolysis system that operated stably under various pressure conditions while measuring the stack and system efficiency. At 0.7MPa, the efficiency of the alkaline water electrolysis stack and the system that used in this study was 76.3% and 49.8% respectively. Through the GC analysis in produced $H_2$, the $N_2$ (5,157ppm) and $O_2$ (1,646 ppm) among Ar, $O_2$, $N_2$, CO and $CO_2$ confirmed as main impurities. It can be possible that the result of this study can apply to establish the safety standards for the hydrogen production system by water electrolysis.

Study on Acidification and Neutralization Characteristics of Precipitation in JejuCity between 1997 and 2005 (1997~2005년 제주시 지역 강수의 산성화 및 중화 특성 연구)

  • Kang Chang-Hee;Hong Sang-Bum;Kim Won-Hyung;Ko Hee-Jung;Lee Sun-Bong;Song Jung-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.487-498
    • /
    • 2006
  • Total 438 precipitation samples were collected in Jeju City between 1997 and 2005, and their major ionic components were analyzed. The comparison tests using ion balance, electric conductivity and acid fraction were performed. It was found their correlation coefficients were in the range of 0.977$\sim$0.994, indicating the good quality of collected dam. The volume-weighted mean pH and electric conductivity were 4.8 and 23.0 $\mu$S/cm, respectively. with the ionic strength of 0.23$\pm$0.20 mM. The marine ($Na^+$, $Mg^{2+}$, and $CI^-$), anthropogenic (nss$SO_4{2-}$, $NO_3^-$, and $NH_4^+$) and soil (nss-$Ca^{2+}$) species have contributed to the ionic components of precipitation samples with 43$\sim$74%, 16$\sim$37% and $\sim$5%, respectively. The seasonal variations of $NO_3^-$ and nss-$SO_4^{2-}$ showed a distinct seasonality with higher concentrations in winter than summer, indicating an increase of fossil fuel consumption and a possibility of long-range transport of those pollutants from continental area along the dominant winter westerly. The levels of nss-$Ca^{2+}$ also were appeared the highest in winter and increased comparatively in spring season. possibly due to the soil influences including the Asian Dust. The acidification contribution of nss-$SO_4^{2-}$ and $NO_3^-$ showed 88$\sim$96%, and the free acidity was in the range of 6.0$\sim$40.1%. Interestingly, the backward trajectories for the case of upper 10% nss-$SO_4^{2-}$ and $NO_3^-$ levels have passed through the China continent before their arrival to Jeju. The precipitation of pH below 4.5 has been occurred frequently when the trajectory's path lied over the China continents. On the other hand, the air masses from the North Pacific area were characterized by lower 10% of nss-$SO_4^{2-}$- and $NO_3^-$ concentration, which demonstrated that air mass from the North Pacific was the cleanest among air masses moved to Jeju.

Cellular Responses to Alcohol in Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae (알코올에 대한 Escherichia coli, Clostridium acetobutylicum, Saccharomyces cerevisiae의 반응)

  • Park, Ju-Yong;Hong, Chun-Sang;Han, Ji-Hye;Kang, Hyun-Woo;Chung, Bong-Woo;Choi, Gi-Wook;Min, Ji-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.105-108
    • /
    • 2011
  • The increased concern for the security of the oil supply and the negative impact of fossil fuels on the environment, particularly greenhouse gas emissions, has put pressure on society to find renewable fuel alternatives. Compared to the traditional biofuel, ethanol, higher alcohols offer advantage as gasoline substitutes because of their higher energy density and lower hygroscopicity. For this reason, microbial fermentation is known as potential producers for sustainable energy carriers. In this study, bacterial responses including cellular and molecular toxicity were studied in three different microorganisms, such as Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae. In this study, it was analyzed specific stress responses caused by ethanol and buthanol using four different stress responsive genes, i.e. fabA, grpE, katG and recA. The expression levels of these genes were quantified by semi-quantitative reverse transcription-PCR. It was found that four genes have shown different responsive patterns when E. coli cultures were under stressful conditions caused by ethanol and buthanol, respectively. Therefore, in this study, the stress responsive effects caused by these alcohols and the extent of each stress response can be analyzed using the expression levels and patterns of different stress responsive genes.

Removal of tar and particulate from gasification process using pre-coating technology (바이오매스 가스화 공정의 생성가스 중 타르 및 입자 제거를 위한 pre-coating 기술 연구)

  • Kim, Joon-Yub;Choi, Byoung-Kwon;Jo, Young-Min;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.804-815
    • /
    • 2019
  • Due to the depletion and environmental problems of fossil fuel, biomass has arisen as an alternative energy source. Biomass is a renewable and carbon-neutral source. However, it is moister and has lower energy density. Therefore, biomass needs thermal chemical conversion processes like gasification, and it does not only produce a flammable gas, called 'syngas', which consists of CO, H2, and CH4, but also some unwanted byproducts such as tars and some particulates. These contaminants are condensed and foul in pipelines, combustion chamber and turbine, causing a deterioration in efficiency. Thus this work attempted to find a method to remove tars and particles from syngas with a filter which adopts a pre-coating technology for preventing blockage of the filter medium. Hydrated limestone powder and activated carbon(wood char) powder were used as the pre-coat materials. The removal efficiency of the tars was 86 % and 80 % with activated carbon(wood char) coating and hydrated limestone coating, respectively.

Analysis and improvement of transfer power capability considering movable load charging of EV (전기자동차 충전부하의 이동성을 고려한 전송 전력량의 해석 및 개선)

  • Kim, Deok Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.762-767
    • /
    • 2017
  • This paper presents an analysis for improving the power transfer capability in transmission lines caused by the movable load charging of electric vehicles (EVs). EVs are expected to be used more widely and replace gas fuel vehicles in the near future due to the shortage of fossil fuels and for environmental preservation. Movable load charging of EVs could lead to the convergence of transferred power flow and overloading conditions in transmission lines in a specific area of a power system, which is conventionally based on estimated fixed load capability. To analyze these conditions, the New England Test System was divided into four regions based on the load characteristics, and different charging scenarios were considered. In these scenarios, the regional power load was highly increased to 31% based on the standard charging capacity of an EV. As a solution to the overloading problem of transmission lines, a TCSC was installed serially on the overloaded line to directly control the transferred power under limited line capability (100% load capability). The simulation showed that the application of a few TCSCs could efficiently and economically control the line capability problem caused by movable load charging of EVs.