• Title/Summary/Keyword: fossil’s scale

Search Result 24, Processing Time 0.02 seconds

Analysis of the Locality and Scale of the Presentation of Fossil Photographs in Textbooks of Earth Science on the 7th Curriculum (제7차 교육과정 지구과학 관련 교과서에서의 화석사진에 대한 산출지역 및 척도 표기 분석)

  • Chung Chull Hwan;Moon Byoung Chan;Kim Hai-Gyoung
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.477-488
    • /
    • 2005
  • Fossil photographs in science and earth science textbooks on the 7th curriculum including those of elementary, middle and high school, are analyzed to estimate the adequacy and scientific significance focusing on the locality and scale. The results show that most of the textbooks have included various types of fossil photographs: 32 in elementary textbooks, 50 in middle school and 109 in high school. However, the presentation of scientific information on each photographs is insufficient. Only $68\%$ of the elementary textbooks designates locality and only $6\%$ includes scales. Among middle and high school textbooks, 40 and $16\%$ of photographs describe locality, and 14 and $18\%$ of photographs exhibit scale, respectively. More scientific and appropriate presentation of fossil photographs, such as locality and scale, is needed to enhance educational effect.

Autonomous Micro-grid Design for Supplying Electricity in Carbon-Free Island

  • Hwang, Woo-Hyun;Kim, Sang-Kyu;Lee, Jung-Ho;Chae, Woo-Kyu;Lee, Je-Ho;Lee, Hyun-Jun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1112-1118
    • /
    • 2014
  • In island and backcountry areas, electrical power is usually supplied by diesel generators. It is difficult for small scale diesel generators to have an economy of scale owing to the usage of fossil fuels to produce electricity. Also, there is a problem of carbon dioxide emissions that brings some environmental pollution to the entire region of the area. For solving those, this paper proposes a design method of autonomous micro-grid to minimize the fossil fuels of diesel generator, which is composed of diesel generator, wind turbine, battery energy storage system and photovoltaic generation system. The proposed method was verified through computer simulation and micro-grid operation system.

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.

Analysis of Feasible Biomass Potential Using GIS and Aggregating Agricultural Census Data (GIS와 농업통계자료를 활용한 바이오매스 가용부존량 분석)

  • Kim, Han-Joong;Hong, Seong-Gu
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.82-94
    • /
    • 2010
  • Recently, biomass application for energy is getting more interests from many countries since biomass is widely available over the nation wide, whereas fossil fuels are produced in several limited regions. Recognizing the importance, government is promoting renewable energy use in Korea. The locational characteristics of the existing biomass potential directly can be used to decide scale of power plant for local agricultural facility. Although there are a few studies on feasible biomass potential in local areas, it is expected that both government and commercial sectors recognize the potential of biomass energy and the importance of reducing greenhouse gases. When planning biomass energy systems, biomass price is determined by the costs of collection, transportation, chipping, drying if required. In this paper investigates the economic and spatial characteristic of biomass location by land use map. However typical area of each categories in local region is not correct to agricultural census data. Therefore we concerned about how to calculate feasible biomass potential which it can be describing total amount of plant scale, and to match both of data. Even though its spatial distribution, in rural area in Korea, to expand biomass energy programs in the area, government serve to find areas of higher biomass production with suitable locations for plants to convert to bio-energy in order to increase the usage of renewable energy.

  • PDF

Evaluation and Direction of the New Town Development in Korea (우리나라 신도시 개발의 평가 및 발전방향)

  • Kim, Dong-Yoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.2
    • /
    • pp.5-16
    • /
    • 2013
  • With regard to the new town developments which have supplied lots of houses in a short period of time in Korea this study aims to evaluation and finding out problems of the developments finally to suggest the direction. A new town's competitiveness model set in the previous paper takes a role of research frame to recognize the problems and to show the direction. The model explains that new town's competitiveness is composed of 4 factors; Self-sufficiency, Innovativenss, Identity and Sustainability. Problems of the developments are as follows; incongruity of spatial structure especially in the capital region, deficiency of self-sufficiency resulted from single-use development, restriction on mixed development by a number of regulations in capital region, low business value, grand scale of land compensation, house oriented planning guidance, unfair share of infrastructure fee, and physical structure depending mainly on fossil energy. Based on this recognition this study conclusively suggests corresponding direction such as role performance as a means of urban growth management, promotion of quality of life by accumulating social capital, introduction of socially sustainable management program for the new towns, discovery and creation of town's value, reexamination of self-sufficiency's meaning or target, selective deregulation of metropolitan development, institutional strategy for cost reduction, changeover from house index to urban function oriented index, and pursuit of low-carbon green town.

Production of Biodiesel and Nutrient Removal of Municipal Wastewater using a Small Scale Raceway Pond (미세조류 옥외 배양시스템을 이용한 바이오디젤 생산 및 도시하수 영양 염류 제거)

  • Kang, Zion;Kim, Byung-Hyuk;Oh, Hee-Mock;Kim, Hee-Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.207-214
    • /
    • 2013
  • A concerted effort to develop alternative forms of energy is underway due to fossil fuel shortages and its deleterious effects. Recently, bioenergy from microalgae has gained prominence and the use of municipal wastewater as a low cost alternative for a nutrient source has significant advantages. In this study, we have employed municipal wastewater directly after primary treatment (primary settling basin) in a small scale raceway pond (SSRP) for microalgal growth. Indigenous microalgae in the wastewater were encouraged to grow in the SSRP under optimal conditions. The mean removal efficiencies of TN, TP, and $NH_3-N$ after 6 days were 77.77%, 63.55%, and 89.02%, respectively. The average lipid content of the microalgae was 19.51% of dry cell weight, and linolenate and linoleate (18:n) were the predominant fatty acids. The 18S rRNA gene analysis and microscopic observations of the indigenous microalgae community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. These results indicate that untreated municipal wastewater, serving as an excellent nitrogen and phosphate source for microalgal growth, could be treated using microalgae in open raceway ponds. Moreover, microalgal biomass could be further profitable by the extraction of biodiesel.

Biodiesel Production and Nutrients Removal from Piggery Manure Using Microalgal Small Scale Raceway Pond (SSRP) (미세조류 옥외배양 시스템을 이용한 돈분 액체 비료의 영양염류 제거 및 바이오디젤 생산)

  • Choi, Jong-Eun;Kim, Byung-Hyuk;Kang, Zion;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.26-34
    • /
    • 2014
  • Due to the rapid energy consumption and fossil fuel abundance reduction, the world is progressively in need of alternative and renewable energy sources such as biodiesel. Biodiesel from microalgae offers high hopes to the scientific world for its potential as well as its non-competition with arable lands. Taking consideration to reduce the cost of production as well as to attain twin environmental goals of treatment and use of animal waste material the microalgal cultivation using piggery manure has been tested in this study. Unialgal strains such as Chlorella sp. JK2, Scenedesmus sp. JK10, and an indigenous mixed microalgal culture CSS were cultured for 20 days in diluted piggery manure using Small Scale Raceway Pond (SSRP). Biomass production and lipid productivity of CSS were $1.19{\pm}0.09gL^{-1}$, $12.44{\pm}0.38mgL^{-1}day^{-1}$, respectively and almost twice that of unialgal strains. Also, total nitrogen and total phosphorus removal efficiencies of CSS was 93.6% and 98.5% respectively and 30% higher removal efficiency compared to the use of unialgal strains. These results indicate that the piggery manure can provide microalgae necessary nitrogen and phosphorus for growth thereby effectively treating the manure. In addition, overall cost of microalgal cultivation and subsequently biodiesel production would be significantly reduced.

Influences of Cathodic Protection and Coating Properties on the Corrosion Control of Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.242-249
    • /
    • 2005
  • A lot of parts in FGD (Flue Gas Desulfurization) systems of fossil-fuel power plants show the environments in which are highly changeable and extremely acidic corrosive medium according to time and locations, e.g. in duct works, coolers and re-heaters etc. These conditions are formed when system materials are immersed in fluid that flows on them or when exhausted gas is condensed into thin layered acidic medium to contact materials of the system walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of the condensed solution. To cathodically protect the metallic structures in extremely acidic fluid, the properties of the protective coatings on the metal surface were very important, and epoxy Novolac coating was applied in this work. On the base of acid immersion tests, hot sulfuric acid decreased the hardness of the coatings and reduced greatly the content of $Na_2O$, $Al_2O_3$, and $SiO_2$ among the main components of the coating. A special kind of CP(Cathodic Protection) system has been developed and tested in a real scale of the FGD facility. Applied coating for this CP system was peeled off and cracked in some parts of the facility. However, the exposed metal surface to extremely acidic fluid by the failure of the coatings was successfully protected by the new CP system.

Combined Propulsion System Analysis for Naval Combatant Vessels using Diesel and Gas Turbine Engine (디젤 및 가스터빈 엔진을 사용하는 전투함의 복합추진체계 기술 동향 분석)

  • Lee, H.M.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.16-21
    • /
    • 2011
  • The large scale decisive battle will be gradually reduced on the sea in the future and surface combatant ship installed advanced weapon units as well as propulsion system will be continuously increased. The high level of military technology leads to appear state-of-the-art weapon system using high power energy. As a results, fossil fuel powered main prime mover as diesel engine and gas turbine which are composed of mechanical propulsion system should be decreased from combatant ship in the near future. The new building naval combatant ship with the latest technology has electric based propulsion method of the hybrid type combined with mechanical and electrical drive. U.S. and Royal Navy, especially, select the integrated fully electric based propulsion system for the next generation combat ship and play an important roll for developing them. In this context, this paper was focused on the deduction of implications through analyzing the combatant ship propulsion system using diesel and gas turbine engine which are promoted on the worldwide.

Bioprocess Control for Continuous Culture of Dunaliella Salina in Flat Panel Photobioreactor (평판형 광생물반응기의 Dunaliella Salina 연속배양을 위한 생물공정 제어)

  • Kim, Gwang Ho;Ahn, Dong-Gyu;Park, Jong Rak;Choi, Gang Hun;Kim, Jong Tye;Kim, Ki Won;Jeong, Sang Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • The indiscriminate use of the fossil fuel has caused serious environmental pollutions such as the shortage of energy and global warming. Microalgae have being emphasized as $3^{rd}$ generation biomass which makes the carbon dioxide reduce effectively as well as produces the biofuel. Large scale production of microbial biomass by continuous culture is a quite challenging issue, because off-line optimization strategies of a microbial process utilizing a model-based scheme give rise to many difficult problems. In this paper, the static and simple control method which was able to be applied in time-variant growth environment and large scale of algae culture was studied. The significant disturbances in on-line measurement of cell density were reduced by Savitzky-Golay FIR smoothing filter. Dunaliella salina was cultivated continuously in a flat panel photobioreactor by the on-off control of the turbidostat process.