• Title/Summary/Keyword: forward solution

Search Result 367, Processing Time 0.033 seconds

DIFFUSION APPROXIMATION OF TIME DEPENDENT QUEUE SIZE DISTRIBUTION FOR $M^X$/$G^Y$/$_c$ SYSTEM$^1$

  • Choi, Bong-Dae;Shin, Yang-Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.419-438
    • /
    • 1995
  • We investigate a tansient diffusion approximation of queue size distribution in $M^{X}/G^{Y}/c$ system using the diffusion process with elementary return boundary. We choose an appropriate diffusion process which approxiamtes the queue size in the system and derive the transient solution of Kolmogorov forward equation of the diffusion process. We derive an approximation formula for the transient queue size distribution and mean queue size, and then obtain the stationary solution from the transient solution. Accuracy evalution is presented by comparing approximation results for the mean queue size with the exact results or simulation results numerically.

  • PDF

Direct Position Kinematics Solution For Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 백재호;배형섭;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.580-583
    • /
    • 2002
  • This paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators, which is convenient and intuitionistic to us. A class of 3-RSR parallel manipulator is considered here. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics. The closed-form solution contains two different meanings-analytical and real-time. So we reach the goal of practical application and control. A numerical example is also presented and are verified by an inverse kinematics analysis. It shows that the method has a practical value for real-time control.

  • PDF

Feasible Design Area of 4 Bar Input Crank for 3 Position Synthesis of Watt-II 6 Bar Mechanism (6 절기구 응용을 위한 3 위치 운동 생성용 4절 가구 합성을 위한 입력 크랭크의 합당해 영역)

  • 범진환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.88-98
    • /
    • 1998
  • In many automatization applications, a rigid body is required to go forward and backward repeatedly through a set of given position/orientations precisely while a crank is rotated. Such a motion can be generated by 6 bar mechanism adding a dyad to a 4 bar mechanism. If this is the case for 3 position synthesis of the 4 bar mechanism, the feasible solution area for designing the 4 bar mechanism will be limited over the general solution area. This paper proposes a procedure to synthesize 4 bar mechanism to be used to generate the required motion. It is found that the only input crank of the 4 bar mechanism should be limited to satisfy the condition. And the feasible design area for the circle point/ center point of the input crank is identified so that design of the undesired mechanism could be avoided. The method is tested and the results are shown.

  • PDF

Designing of Dynamic Sensor Networks based on Meter-range Swarming Flight Type Air Nodes

  • Kang, Chul-Gyu;Kim, Dae-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.625-628
    • /
    • 2011
  • Dynamic sensor network(DSN) technology which is based on swarming flight type air node offers analyzed and acquired information on target data gathered by air nodes in rotation flight or 3 dimension array flight. Efficient operation of dynamic sensor network based on air node is possible when problems of processing time, data transmission reliability, power consumption and intermittent connectivity are solved. Delay tolerant network (DTN) can be a desirable alternative to solve those problems. DTN using store-and-forward message switching technology is a solution to intermittent network connectivity, long and variable delay time, asymmetric data rates, and high error rates. However, all processes are performed at the bundle layer, so high power consumption, long processing time, and repeated reliability technique occur. DSN based on swarming flight type air node need to adopt store-and-forward message switching technique of DTN, the cancelation scheme of repeated reliability technique, fast processing time with simplified layer composition.

Numerical Simulation of Unsteady Rotor Flow Using an Unstructured Overset Mesh Flow Solver

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.104-111
    • /
    • 2009
  • An unstructured overset mesh method has been developed for the simulation of unsteady flow fields around isolated rotors and rotor-fuselage configurations. The flow solver was parallelized for the efficient calculation of complicated flows requiring a large number of cells. A quasi-unsteady mesh adaptation technique was adopted to enhance the spatial accuracy of the solution and to better resolve the rotor wake. The method has been applied to calculate the flow fields around rotor-alone and rotor-fuselage configurations in forward flight. Validations were made by comparing the predicted results with those of measurements. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

Mathematical Model for Cold Rolling and Temper Rolling Process of Thin Steel Strip

  • Lee, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1296-1302
    • /
    • 2002
  • A mathematical model for cold rolling and temper rolling process of thin steel strip has been developed using the influence function method. By solving the equations describing roll gap phenomena in a unique procedure and considering more influence factors, the model offers significant improvements in accuracy, robustness and generality of the solution for the thin strip cold and temper rolling conditions. The relationship between the shape of the roll profile and the roll force is also discussed. Calculation results show that any change increasing the roll force may result in or enlarge the central flat region in the deformation zone. Applied to the temper rolling process, the model can well predict not only the rolling load but also the large forward slip. Therefore, the measured forward slip, together with the measured roll force, was used to calibrate the model. The model was installed in tile setup computer of a temper rolling mill to make parallel setup calculations. The calculation results show good agreement with the measured data and the validity and precision of the model are proven.

Machine Layout Decision Algorithm for Cellular Formation Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.47-54
    • /
    • 2016
  • Cellular formation and layout problem has been known as a NP-hard problem. Because of the algorithm that can be solved exact solution within polynomial time has been unknown yet. This paper suggests a systematic method to be obtain of 2-degree partial directed path from the frequency of consecutive forward order. We apply the modified Kruskal algorithm of minimum spanning tree to be obtain the partial directed path. the proposed reverse constructive algorithm can be solved for this problem with O(mn) time complexity. This algorithm performs same as best known result of heuristic and metaheuristic methods for 4 experimental data.

Analysis on Kinematic Characteristics for Spatial 3-DOF Parallel Mechanisms Employing Stewart Platform Structure (스튜워트 플랫폼 구조를 이용한 공간형 3자유도 병렬 메커니즘의 기구학 특성 분석)

  • Lee Seok Hee;Lee Jung Hun;Kim Whee Kuk;Yi Byung Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.118-127
    • /
    • 2005
  • A spatial 3 degrees-of-freedom mechanism employing Stewart Platform structure is proposed: the mechanism maintains the 3- RRPS structure of Stewart Platform but has an additional passive PRR serial sub-chain at the center area of the mechanism in order to constrain the output motion of the mechanism within the output motion space of the added PRR serial subchain. The forward and reverse position analyses of the mechanism are performed. Then the mechanism having both the forward and the reverse closed-form solutions is suggested and its closed form solutions are derived. It is confirmed, through the kinematic analysis of those two proposed mechanisms via kinematic isotropic index, that both the proposed mechanisms have fairly good kinematic characteristics compared to the existing spatial 3-DOF mechanisms in literature.

A Study on the Design of ZVS Multi-Resonant Forward Converter for Non-contact Charging (비접촉 충전을 위한 ZVS 다중공진 포워드 컨버터의 설계에 관한 연구)

  • 김영길;김진우;박진홍;이종규;이성백
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.70-76
    • /
    • 2000
  • In the charge system, a contact type-convenient-charging method is insufficient because of the contact failure around moist environment and troublesome question to put in and pull out. For the solution of this problem, an electromagnetically coupled non-contact charger for the rechargeable cell is proposed using ZVS multi-resonant forward converter with synchronous rectifier. In this paper coupling coefficient(k), leaking inductance, coupling inductance and resonant frequency are observed for the air gap. By using the observed value, this circuit is designed and implemented. This proposed circuit is simulated by the PSPICE and experimented. The stress of a main switch and the output power are measured.

  • PDF

Development of a New Buffing Robot Manipulator for Shoes (새로운 신발 버핑로봇 매니퓰레이터 개발)

  • Hwang Gyu-Deuk;Cho Sung-Duk;Choi Hyeung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.76-83
    • /
    • 2006
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot manipulator is composed of five degrees of freedom. An analysis on the forward and inverse kinematics was performed. Through the analysis, an analytic solution was derived for the joint angles corresponding to the position and orientation of the tool in the Cartesian coordinates. The hardware system of the robot composed of the control system, input/output interface system, and related electronic system was developed. The communication system was also developed to interact the robot with the related surrounding systems. A graphic user interface(GUI) program including the forward/inverse kinematics, control algorithm, and communication program was developed using visual C++ language.