• 제목/요약/키워드: forward neural network

검색결과 272건 처리시간 0.028초

An Artificial Neural Networks Application for the Automatic Detection of Severity of Stator Inter Coil Fault in Three Phase Induction Motor

  • Rajamany, Gayatridevi;Srinivasan, Sekar
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2219-2226
    • /
    • 2017
  • This paper deals with artificial neural network approach for automatic detection of severity level of stator winding fault in induction motor. The problem is faced through modelling and simulation of induction motor with inter coil shorting in stator winding. The sum of the absolute values of difference in the peak values of phase currents from each half cycle has been chosen as the main input to the classifier. Sample values from workspace of Simulink model, which are verified with experiment setup practically, have been imported to neural network architecture. Consideration of a single input extracted from time domain simplifies and advances the fault detection technique. The output of the feed forward back propagation neural network classifies the short circuit fault level of the stator winding.

센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링 (Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring)

  • ;권오양
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.

Reinforcement Learning Control using Self-Organizing Map and Multi-layer Feed-Forward Neural Network

  • Lee, Jae-Kang;Kim, Il-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.142-145
    • /
    • 2003
  • Many control applications using Neural Network need a priori information about the objective system. But it is impossible to get exact information about the objective system in real world. To solve this problem, several control methods were proposed. Reinforcement learning control using neural network is one of them. Basically reinforcement learning control doesn't need a priori information of objective system. This method uses reinforcement signal from interaction of objective system and environment and observable states of objective system as input data. But many methods take too much time to apply to real-world. So we focus on faster learning to apply reinforcement learning control to real-world. Two data types are used for reinforcement learning. One is reinforcement signal data. It has only two fixed scalar values that are assigned for each success and fail state. The other is observable state data. There are infinitive states in real-world system. So the number of observable state data is also infinitive. This requires too much learning time for applying to real-world. So we try to reduce the number of observable states by classification of states with Self-Organizing Map. We also use neural dynamic programming for controller design. An inverted pendulum on the cart system is simulated. Failure signal is used for reinforcement signal. The failure signal occurs when the pendulum angle or cart position deviate from the defined control range. The control objective is to maintain the balanced pole and centered cart. And four states that is, position and velocity of cart, angle and angular velocity of pole are used for state signal. Learning controller is composed of serial connection of Self-Organizing Map and two Multi-layer Feed-Forward Neural Networks.

  • PDF

Study on an Intelligent Ferrography Diagnosis Expert System

  • Jiadao, Wang;Darong, Chen;Xianmei, Kong
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.455-456
    • /
    • 2002
  • Wear is one of the main factors causing breakdown and fault of machine, so ferrography technique analyzing wear particles can be an effective way for condition monitoring and fault diagnosis. On the base of the forward multilayer neural network, a nodes self-deleting neural network model is provided in this paper. This network can itself deletes the nodes to optimize its construction. On the basis of the nodes self-deleting neural network, an intelligent ferrography diagnosis expert system (IFDES) for wear particles recognition and wear diagnosis is described. This intelligent expert system can automatically slim lip knowledge by learning from samples and realize basically the entirely automatic processing from wear particles recognition to wear diagnosis.

  • PDF

신경망을 이용한 금형공장용 일정계획 시스템에 관한 연구 (A Study on Scheduling System for Mold Factory Using Neural Network)

  • 이형국;이석희
    • 산업공학
    • /
    • 제10권3호
    • /
    • pp.145-153
    • /
    • 1997
  • This paper deals with constructing a scheduling system for a mold manufacturing factory. The scheduling system is composed of 4 submodules such as pre-processor, neural network training, neural networks and simulation. Pre-processor analyzes the condition of workshop and generates input data to neural networks. Network training module is performed by using the condition of workshop, performance measures, and dispatching rules. Neural networks module presents the most optimized dispatching rule, based on previous training data according to the current condition of workshop. Simulation module predicts the earliest completion date of a mold by forward scheduling with the presented dispatching rules, and suggests a possible issue date of a material by backward tracking. The system developed shows a great potential when applied in real mold factory for automotive parts.

  • PDF

퍼지-뉴럴 제어기를 이용한 유도전동기 속도제어 (A Study on Induction Motor Speed Control Using Fuzzy-Neural Network)

  • 김세찬;김학성;류홍제;원충연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.251-254
    • /
    • 1995
  • The Fuzzy-Neural Controller is constructed to resolve some dificulties taking place in decision of membership functions, input and output gains and an inferenced method for desinging fuzzy logic controller. In addition Neural network emulator is used to emulate induction motor forward dynamics and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. A back propagation algorithm is used to train fuzzy-neural controller and emulator. The experimental results show that this control system can provide good dynamical responses.

  • PDF

Comparison of Objective Functions for Feed-forward Neural Network Classifiers Using Receiver Operating Characteristics Graph

  • Oh, Sang-Hoon;Wakuya, Hiroshi
    • International Journal of Contents
    • /
    • 제10권1호
    • /
    • pp.23-28
    • /
    • 2014
  • When developing a classifier using various objective functions, it is important to compare the performances of the classifiers. Although there are statistical analyses of objective functions for classifiers, simulation results can provide us with direct comparison results and in this case, a comparison criterion is considerably critical. A Receiver Operating Characteristics (ROC) graph is a simulation technique for comparing classifiers and selecting a better one based on a performance. In this paper, we adopt the ROC graph to compare classifiers trained by mean-squared error, cross-entropy error, classification figure of merit, and the n-th order extension of cross-entropy error functions. After the training of feed-forward neural networks using the CEDAR database, the ROC graphs are plotted to help us identify which objective function is better.

Contour Plots of Objective Functions for Feed-Forward Neural Networks

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제8권4호
    • /
    • pp.30-35
    • /
    • 2012
  • Error surfaces provide us with very important information for training of feed-forward neural networks (FNNs). In this paper, we draw the contour plots of various error or objective functions for training of FNNs. Firstly, when applying FNNs to classifications, the weakness of mean-squared error is explained with the viewpoint of error contour plot. And the classification figure of merit, mean log-square error, cross-entropy error, and n-th order extension of cross-entropy error objective functions are considered for the contour plots. Also, the recently proposed target node method is explained with the viewpoint of contour plot. Based on the contour plots, we can explain characteristics of various error or objective functions when training of FNNs proceeds.

은닉지식 추출을 이용한 신경망회로망 정제 (Neural Network Refinement using Hidden Knowledge Extraction)

  • 김현철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권11호
    • /
    • pp.1082-1087
    • /
    • 2000
  • 신경회로망 구조의 정제(精製)는 회로망의 일반화능력이나 효율성의 관점에서 중요한 문제이다. 본 논문에서는 feed-forward neural networks로부터 은닉지식을 추출하는 방법을 사용하여 네트워크 재구성을 통한 정제방법을 제안한다. 먼저, 효율적인 if-then rule 추출방법을 제시하고 그 추출된 룰들을 사용하여 룰기반 네트워크로 변환하는 과정을 보여준다. 생성된 룰기반 네트워크 fully connected network에 비하여 상당히 축소된 연결 복잡도를 가지게 되며 일반적으로 더 우수한 일반화능력을 가지게 된다. 본 연구는 도메인 지식이 없이 데이타만 사용하여 어떻게 정제된 룰기반 신경망회로를 생성하고 있는가를 보여준다. 도메인 데이타들에 대한 실험결과도 제시하였다.

  • PDF

Study on the Effect of Discrepancy of Training Sample Population in Neural Network Classification

  • Lee, Sang-Hoon;Kim, Kwang-Eun
    • 대한원격탐사학회지
    • /
    • 제18권3호
    • /
    • pp.155-162
    • /
    • 2002
  • Neural networks have been focused on as a robust classifier for the remotely sensed imagery due to its statistical independency and teaming ability. Also the artificial neural networks have been reported to be more tolerant to noise and missing data. However, unlike the conventional statistical classifiers which use the statistical parameters for the classification, a neural network classifier uses individual training sample in teaming stage. The training performance of a neural network is know to be very sensitive to the discrepancy of the number of the training samples of each class. In this paper, the effect of the population discrepancy of training samples of each class was analyzed with three layered feed forward network. And a method for reducing the effect was proposed and experimented with Landsat TM image. The results showed that the effect of the training sample size discrepancy should be carefully considered for faster and more accurate training of the network. Also, it was found that the proposed method which makes teaming rate as a function of the number of training samples in each class resulted in faster and more accurate training of the network.