• 제목/요약/키워드: forward neural network

검색결과 273건 처리시간 0.021초

시간처짐현상을 고려한 장거리구간 통행시간 예측 모형 개발 (Development of a Freeway Travel Time Forecasting Model for Long Distance Section with Due Regard to Time-lag)

  • 이의은;김정현
    • 대한교통학회지
    • /
    • 제20권4호
    • /
    • pp.51-61
    • /
    • 2002
  • 본 연구에서는 운전자 입장에서 원하는 고속도로 다구간의 통행시간을 예측하는 모형을 구축하였다. 현재 지점검지기를 통해 생성되는 예상통행시간 정보는 장거리 통행시 발생되는 시간처짐현상을 반영하지 못하고 있다. 이로 인하여 도로이용자들의 신뢰가 떨어져. 전체적인 ATIS의 효과를 거두지 못하고 있다. 따라서 본 연구에서는 시간처짐 현상과 영업소 지체를 반영한 고속도로 다구간의 통행시간예측을 위하여, 한국도로공사에서 운영중인 검지기의 교통량 자료와 TCS자료를 사용하였다. 또한 실제 시스템에의 적용을 위해 이상치가 섞여 있는 자료를 유지하였다. 예측에 사용된 모형은 3개의 입력유니트와 2개의 출력유니트를 가지는 선행신경망의 형태로 구성하였으며, 학습방법은 역전파법을 이용하였다. 또한 학습속도와 예측력에 영향을 주는 학습계수, 은닉층의 유니트수, 반복 횟수에 따라 12개의 대안을 구성하여 예측결과를 토대로 최적대안을 모형으로 채택하였다. 이러한 본 연구의 자료특성에 의해 원하는 구간까지의 통행시간을 구할 수가 있다.

인공신경망 시뮬레이터를 이용한 가스전 생산정 위치선정 연구 (A Study on Production Well Placement for a Gas Field using Artificial Neural Network)

  • 한동권;강일오;권순일
    • 한국가스학회지
    • /
    • 제17권2호
    • /
    • pp.59-69
    • /
    • 2013
  • 본 연구에서는 가스전의 추가 생산정 위치선정을 위해 고속의 연산이 가능한 인공신경망을 이용하여 저류 전산시뮬레이터를 개발하였다. 입출력자료와 알고리즘을 설계하였으며, 개발한 시뮬레이터를 이용하여 가스전의 추가 생산정 위치선정을 위한 연구를 수행하였다. 입력값은 생산시간, 생산정간 상관관계, 추가 생산정 위치좌표, 생산성 잠재력, 함수적 연관관계, 저류층 압력으로 구성하였으며, 출력값은 생산량과 함께 공저압력을 동시에 사용하였다. 20가지의 생산정 위치 시나리오에 대해 학습을 수행한 결과, 생산량의 상관계수 값은 0.99, 공저압력은 0.98로 상관관계가 매우 높은 것으로 확인되어 인공신경망 시뮬레이터의 타당성이 검증되었다. 가스전에서 최대공급계약량 유지시점을 산출함으로써 생산정 위치에 따른 생산성을 분석하였다. 그 결과 시나리오 C-1이 최대공급계약량 유지기간이 가장 짧았으며, 시나리오 A-1이 가장 오랫동안 유지시킬 수 있는 것으로 산출되었다. 결론적으로, 시나리오 A가 생산성에 영향을 받는 인자를 포함한 시나리오 B, C보다 최대 21% 더 최대공급계약량을 유지시킬 수 있는 것으로 확인되었다. 따라서 생산성에 영향을 미치는 요소를 종합적으로 고려하여 생산정의 위치를 선정해야 생산량을 극대화 할 수 있다. 본 인공신경망 시뮬레이터를 이용 시 생산기간동안 생산량과 공저압력 변화를 동시에 비교 분석하는 것이 가능하여 다양한 최적화 모델에 전위모델로 사용하는 것이 가능하다.

PHM 기술을 이용한 고속 EMU의 고장 예측 방법 연구 및 적용 (Research and Application of Fault Prediction Method for High-speed EMU Based on PHM Technology)

  • 왕해도;민병원
    • 사물인터넷융복합논문지
    • /
    • 제8권6호
    • /
    • pp.55-63
    • /
    • 2022
  • 최근 중국에서 중대형 도시철도의 급속한 발전으로 고속철도의 총 운행거리와 총 EMU(Electric Multiple Units) 수가 증가하고 있다. 고속 EMU의 시스템 복잡성은 지속적으로 증가하고 있으며, 이는 장비의 안전성과 유지보수의 효율성에 대한 더 높은 요구사항을 제시한다. 현재 중국의 고속 EMU의 유지보수 모드는 여전히 계획적인 유지보수 및 고장보수에 기반한 사후 유지보수 방식을 채택하고 있어 유지보수가 미흡하거나 과도하게 이루어지며, 장비 고장 처리의 효율성을 떨어뜨리고 유지보수 비용을 증가시킨다. PHM(진단 및 예측관리)의 지능형 운영 및 유지관리 기술을 기반으로 합니다. 본 논문은 고속 EMU의 서로 다른 시나리오의 다중 소스 이기종 데이터를 통합하여 "차량 시스템-통신 시스템-지상 시스템"의 통합 PHM 플랫폼을 구축하고, 장비 고장 메커니즘을 인공지능 알고리즘과 결합하여 고속 EMU의 트랙션 모터에 대한 고장 예측 모델을 구축한다. 고속 EMU의 안전하고 효율적인 작동을 보장하기 위해 고장 예측 및 정확한 유지보수를 사전에 수행해야 한다.