• 제목/요약/키워드: forward neural network

검색결과 273건 처리시간 0.026초

학습된 지식의 분석을 통한 신경망 재구성 방법 (Restructuring a Feed-forward Neural Network Using Hidden Knowledge Analysis)

  • 김현철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권5호
    • /
    • pp.289-294
    • /
    • 2002
  • 다층신경회로망 구조의 재구성은 회로망의 일반화 능력이나 효율성의 관점에서 중요한 문제로 연구되어왔다. 본 논문에서는 신경회로망에 학습된 은닉 지식들을 추출하여 조합함으로써 신경회로망의 구조를 재구성하는 새로운 방법을 제안한다. 먼저, 각 노드별로 학습된 대표적인 지역 규칙을 추출하여 각 노드의 불필요한 연결구조들을 제거한 후, 이들의 논리적인 조합을 통하여 중복 또는 상충되는 노드와 연결구조를 제거한다. 이렇게 학습된 지식을 분석하여 노드와 연결구조를 재구성한 신경회로망은 처음의 신경회로망에 비하여 월등히 감소된 구조 복잡도를 가지며 일반적으로 더 우수한 일반화 능력을 가지게 됨을 실험결과로서 제시하였다.

순환 신경망을 이용한 보행단계 분류기 (A Gait Phase Classifier using a Recurrent Neural Network)

  • 허원호;김은태;박현섭;정준영
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.518-523
    • /
    • 2015
  • This paper proposes a gait phase classifier using a Recurrent Neural Network (RNN). Walking is a type of dynamic system, and as such it seems that the classifier made by using a general feed forward neural network structure is not appropriate. It is known that an RNN is suitable to model a dynamic system. Because the proposed RNN is simple, we use a back propagation algorithm to train the weights of the network. The input data of the RNN is the lower body's joint angles and angular velocities which are acquired by using the lower limb exoskeleton robot, ROBIN-H1. The classifier categorizes a gait cycle as two phases, swing and stance. In the experiment for performance verification, we compared the proposed method and general feed forward neural network based method and showed that the proposed method is superior.

신경망 기법을 이용한 스튜어트 플랫폼의 순기구학 추정 (The Estimation for the Forward Kinematic Solution of Stewart Platform Using the Neural Network)

  • 이형상;한명철;이민철
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.186-192
    • /
    • 1999
  • This paper introduces a study of a method for the forward kinematic analysis, which finds the 6 DOF motions and velocities from the given six cylinder lengths in the Stewart platform. From the viewpoints of kinematics, the solution for the inverse kinematic is easily found by using the vectors of the links which are composed of the joint coordinates in base and plate frames, to act contrary to the serial manipulator, but forward kinematic is difficult because of the nonlinearity and complexity of the Stewart platform dynamic equation with the multi-solutions. Hence we, first in this study, introduce the linear estimator using the Luenberger's observer, and the estimator using the nonlinear measured model for the forward kinematic solutions. But it is difficult to find the parameter of the design for the estimation gain or to select the estimation gain and the constant steady state error exists. So this study suggests the estimator with the estimation gain to be learned by the neural network with the structure of multi-perceptron and the learning method using back propagation and shows the estimation performance using the simulation.

  • PDF

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

A Study on Word Sense Disambiguation Using Bidirectional Recurrent Neural Network for Korean Language

  • Min, Jihong;Jeon, Joon-Woo;Song, Kwang-Ho;Kim, Yoo-Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권4호
    • /
    • pp.41-49
    • /
    • 2017
  • Word sense disambiguation(WSD) that determines the exact meaning of homonym which can be used in different meanings even in one form is very important to understand the semantical meaning of text document. Many recent researches on WSD have widely used NNLM(Neural Network Language Model) in which neural network is used to represent a document into vectors and to analyze its semantics. Among the previous WSD researches using NNLM, RNN(Recurrent Neural Network) model has better performance than other models because RNN model can reflect the occurrence order of words in addition to the word appearance information in a document. However, since RNN model uses only the forward order of word occurrences in a document, it is not able to reflect natural language's characteristics that later words can affect the meanings of the preceding words. In this paper, we propose a WSD scheme using Bidirectional RNN that can reflect not only the forward order but also the backward order of word occurrences in a document. From the experiments, the accuracy of the proposed model is higher than that of previous method using RNN. Hence, it is confirmed that bidirectional order information of word occurrences is useful for WSD in Korean language.

신경회로망을 이용한 심전도 데이터 압축 알고리즘에 관한 연구 (A Study on ECG Oata Compression Algorithm Using Neural Network)

  • 김태국;이명호
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권3호
    • /
    • pp.191-202
    • /
    • 1991
  • This paper describes ECG data compression algorithm using neural network. As a learning method, we use back error propagation algorithm. ECG data compression is performed using learning ability of neural network. CSE database, which is sampled 12bit digitized at 500samp1e/sec, is selected as a input signal. In order to reduce unit number of input layer, we modify sampling ratio 250samples/sec in QRS complex, 125samples/sec in P & T wave respectively. hs a input pattern of neural network, from 35 points backward to 45 points forward sample Points of R peak are used.

  • PDF

Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

  • Bhowmik, Subrata;Weber, Felix;Hogsberg, Jan
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.673-693
    • /
    • 2013
  • This paper presents a systematic design and training procedure for the feed-forward back-propagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output, an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where the observed modeling errors for the inverse model can be related to knocking effects in the measured force due to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the pre-yield region where the inverse NN overestimates the current to track the desired viscous force.

깊은 신경망을 이용한 오디오 이벤트 검출 (Audio Event Detection Using Deep Neural Networks)

  • 임민규;이동현;박호성;김지환
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.183-190
    • /
    • 2017
  • 본 논문에서는 깊은 신경망을 이용한 오디오 이벤트 검출 방법을 제안한다. 오디오 입력의 매 프레임에 대한 오디오 이벤트 확률을 feed-forward 신경망을 적용하여 생성한다. 매 프레임에 대하여 멜 스케일 필터 뱅크 특징을 추출한 후, 해당 프레임의 전후 프레임으로부터의 특징벡터들을 하나의 특징벡터로 결합하고 이를 feed-forward 신경망의 입력으로 사용한다. 깊은 신경망의 출력층은 입력 프레임 특징값에 대한 오디오 이벤트 확률값을 나타낸다. 연속된 5개 이상의 프레임에서의 이벤트 확률값이 임계값을 넘을 경우 해당 구간이 오디오 이벤트로 검출된다. 검출된 오디오 이벤트는 1초 이내에 동일 이벤트로 검출되는 동안 하나의 오디오 이벤트로 유지된다. 제안된 방법으로 구현된 오디오 이벤트 검출기는 UrbanSound8K와 BBC Sound FX자료에서의 20개 오디오 이벤트에 대하여 71.8%의 검출 정확도를 보였다.

열연 사상압연공정 스탠드간 열연판속도 측정시스템 적용연구 (Application of a Strip Speed Measurement for Hot Strip Rolling)

  • 홍성철;최승갑
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.212-212
    • /
    • 2000
  • This study was performed to construct a hot strip speed measuring system and check over whether the measured speed can be used for improving the mass flow of the head-end part of a hot strip in the 7-stand finishing mill. Because the mass flow in hot rolling mill affects the looper operation and the thickness and width control of a strip, accurate measurement of strip speed ie important. The measured speed was compared with the roll speeds of No. 6 and No.7 stand to check the performance of the system and analyzed to find how to apply the speed. As a result, it is shown that the accuracy of the system is enough, strip thickness error can be reduced by -275∼+200$\mu\textrm{m}$ using the measured speed and the existing FSU model has low accuracy for predicting forward slip rate. A neural network was developed to calculate forward slip rate instead of FSU model. The test result of the neural network shows that the neural network is more accurate than the FSU model.

  • PDF

Classification System of EEG Signals During Mental Tasks

  • Seo Hee Don;Kim Min Soo;Eoh Soo Hae;Huang Xiyue;Rajanna K.
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.671-674
    • /
    • 2004
  • We propose accurate classification method of EEG signals during mental tasks. In the experimental task, the tasks of subjects show 3 major measurements; there are mathematical tasks, color decision tasks, and Chinese phrase tasks. The classifier implemented for this work is a feed-forward neural network that trained with the error back-propagation algorithm. The new BCI system is proposed by using neural network. In this system, tr e architecture of the neural network is composed of three layers with a feed-forward network, which implements the error back propagation-learning algorithm. By applying this algorithm to 4 subjects, we achieved $95{\%}$ classification rates. The results for BCI mathematical task experiments show performance better than those of the Chinese phrase tasks. The selection time of each task depends on the mental task of subjects. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or yes/no discrimination methods.

  • PDF