• 제목/요약/키워드: forward dynamic

검색결과 483건 처리시간 0.029초

다리 등척성 근력 및 균형 능력에 대한 발목관절 운동과 넓적다리 운동의 비교 (Comparison of Ankle Joint Exercise and Thigh Exercise on the Isometric Strength of the Lower Limb and Balance Ability)

  • 이우중;이선아;김아람;유경태;이호성
    • 대한물리의학회지
    • /
    • 제14권4호
    • /
    • pp.153-162
    • /
    • 2019
  • PURPOSE: This study compared ankle joint exercise and thigh exercise on the isometric strength of the lower limb and balance ability. METHODS: Twenty-seven subjects were divided into ankle joint exercise (AEG, n=9), tight exercise (TEG, n=9), and control group (CON, n=9). AEG and TEG performed ankle joint and tight exercises three times a week for four weeks. The following were measured before and four weeks after each exercise: isometric strength at knee flexion and extension of the lower limb; isometric strength at ankle plantar flexion and dorsiflexion of the lower limb; static balance of trace length and C90 area; and the dynamic forward, backward, leftward, and rightward balance for each region. RESULTS: The results showed that the isometric strength of plantar flexion (p<.05) was increased significantly in AEG compared to those in TEG and CON. The dynamic leftward (p<.05) and rightward balance (p<.05) were increased significantly in both AEG and TEG compared to that in CON. On the other hand, the static balance of the trace length and C90 area, isometric strength of ankle dorsiflexion, knee flexion and extension of the lower limb, and dynamic forward and backward balance did not show significant differences between the groups. CONCLUSION: Ankle joint exercise improves the isometric strength of plantar flexion compared to tight exercise.

운전자 인지반응 연구를 위한 VR 시뮬레이션 시스템 개발 (Development of the VR Simulation System for the Study of Driver's Perceptive Response)

  • 장석;권성진;전지훈;조기용;서명원
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.149-156
    • /
    • 2005
  • In this paper, the VR(Virtual Reality) simulation system is developed to analyze driver's perceptive response on the ASV(Advanced Safety Vehicle). The ASV is the vehicle of next generation equipped with various warning systems. For the purpose, the VR simulation system consists of VR database, vehicle dynamic model, graphic/sound system, and driving system. The VR database which generates 3D graphic and sound information is organized for the driving reality. Mathematical models of vehicle dynamic analysis are constructed to represent the dynamic behavior of a vehicle. The driving system and the graphic/sound system provide a driver with the operation of a vehicle and the feedback of a driving situation. Also, the real-time simulation algorithm synchronizes the vehicle dynamic model with the VR database. To check the validity of the developed system, a simple scenario is applied to investigate driver's perceptive response time and vehicle acceleration on an emergency situation. It is confirmed that the proposed system is useful and helpful to design the FVCWS(Forward Vehicle Collision Warning System).

Changes of postural stability according to ankle fixation in healthy subjects

  • Jeong, Su-Hyeon;Mun, A-Young;Lee, Song-Eun;Kim, Min-Ju;Lee, Hui-Jin;Baek, Kook-Bin;Cho, Ki Hun
    • Physical Therapy Rehabilitation Science
    • /
    • 제8권1호
    • /
    • pp.40-44
    • /
    • 2019
  • Objective: The purpose of this study was to examine the changes in postural stability according to ankle fixation in healthy university students. Design: Cross-sectional study. Methods: Thirty healthy subjects (15 males and 15 females, 20.13 years, 167.49 cm, 65.87 kg) were recruited on a voluntary basis. The BT4 system (HUR Laps Oy, Tampere, Finland) was used to measure the static (standing posture with eyes open and eyes closed) and dynamic (external perturbation and limits of stability (LOS) in the forward, backward, left, and right side) balance abilities. External perturbation was measured by the subject's postural sway velocity and area for 20 seconds after being impacted by a gym ball. Static and dynamic stabilities were measured with ankle joint fixation and non-fixation conditions. Ankle fixation was provided using Mueller tape on both ankle joints. Results: For static stability under the standing posture, there was no significant difference between standing with ankle joint fixation and non-fixation conditions. However, dynamic stability (external perturbation and LOS in the forward, backward, left, and right side) was significantly higher in the standing with the non-fixation condition compared to the standing with ankle joint fixation condition (p<0.05). Conclusions: Our results reveal that ankle joint fixation can influence dynamic stability during standing. Thus, we believe that this result provides basic information for making improvements in postural control and may be useful in balance training for fall prevention.

헛디딤 보행특성과 3 차원 모의해석결과 비교 (Comparison of Three-Dimensional Dynamic Simulation with Falling Gait Analysis)

  • 명성식;금영광;황성재;김한성;김영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.359-363
    • /
    • 2004
  • Numerous studies have been performed to analyze various phenomena of human's walking, gait. In the present study, unrecognized walking and recognized walking were analyzed by three dimensional motion capture system(VICON motion system Ltd., England) and simulated by computer program. Two normal males participated in measuring the motion of unrecognized and recognized walking. Six infrared cameras and four force plates were used and sixteen reflective markers were attached to the subject to capture the motion. A musculoskeletal model was generated anatomically by using ADAMS(MSC software corp., USA) and LifeMOD(Biomechanics Research Group Inc, USA). The inverse dynamic simulation and forward dynamic simulation were also performed. The result of simulation was similar to the experimental result. This study provides the base line for dynamic simulation of the falling walking. It will be useful to simulate various another pathologic gaits for old peoples.

  • PDF

정적 및 동적 균형 수행력에 대한 임산부 여성의 변화 (The Changes of Static and Dynamic Balance Performance in Pregnancy Women)

  • 채윤원
    • The Journal of Korean Physical Therapy
    • /
    • 제20권1호
    • /
    • pp.17-22
    • /
    • 2008
  • Purpose: This study examined whether or not changes in the static and dynamic balance performance occur during pregnancy. Methods: Fourteen pregnant women and fourteen non-pregnant women volunteered to participate in the study. All subjects were tested for their balance performance on the Chattecx Balance System (Chattanooga Group, Inc., USA) under a two platform condition: stable platform and dynamic platform(forward-backward sliding and tilting). The Chattecx Balance System was measured using the postural sway index, anterior-posterior sway index, and medial-lateral sway index. Results: There was a significant difference in the postural sway index and anterior posterior sway index in the static and dynamic platform condition between the pregnant and non-pregnant women (p<0.05). However, there was no difference in the medial-lateral sway index. Conclusion: The postural sway index and anterior-posterior sway index decreases during pregnancy.

  • PDF

공압 쿠션 실린더의 충격압 흡수를 위한 스프링형 니들밸브의 동특성에 관한 연구 (Simulation Study on Dynamic Analysis of Spring Type Needle Valve to Absorb Surge Pressure in Pneumatic Cushion Cylinder)

  • 이재구;;이준;이재천;신현명
    • 유공압시스템학회논문집
    • /
    • 제2권1호
    • /
    • pp.15-22
    • /
    • 2005
  • The purpose of this study is to find the effective dynamic characteristics of an improved pneumatic cushion cylinder with a spring type needle valve. The dynamic model represented the peak pressure control method when the pneumatic cushion cylinder is moving forward or backward in the horizontal direction. It was found from the simulation results that the peak pressure in the cushion chamber is affected by the spring, which helps to understand the performance of the pneumatic cushion cylinder and to improve or design a better cushion needle valve component. From the simulation results, the stability of pneumatic cushion cylinder with a spring type needle valve was superior and its cushion capability was also better than that without the spring.

  • PDF

Analysis of structural dynamic reliability based on the probability density evolution method

  • Fang, Yongfeng;Chen, Jianjun;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.201-209
    • /
    • 2013
  • A new dynamic reliability analysis of structure under repeated random loads is proposed in this paper. The proposed method is developed based on the idea that the probability density of several times random loads can be derived from the probability density of single-time random load. The reliability prediction models of structure based on time responses under several times random loads with and without strength degradation are obtained by using the stress-strength interference theory and probability density evolution method. The resulting differential equations in the prediction models can be solved by using the forward finite difference method. Then, the probability density functions of strength redundancy of the structures can be obtained. Finally, the structural dynamic reliability can be calculated using integral method. The efficiency of the proposed method is demonstrated numerically through a speed reducer. The results have shown that the proposed method is practicable, feasible and gives reasonably accurate prediction.

Dynamic System Modeling for Closed Loop Supply Chains System

  • Wadhwa, Subhash;Madaan, Jitendra
    • Industrial Engineering and Management Systems
    • /
    • 제7권1호
    • /
    • pp.78-89
    • /
    • 2008
  • The need for holistic modeling efforts for returns that capture the extended closed loop supply chain (CLSC) system at strategic as well as operational level has been clearly recognized by the industry and academia. Strategic decision-makers need comprehensive models that can guide them in efficient decision-making to increase the profitability of the entire forward and return chain. Therefore, determination of a near optimal design configuration, which includes the environmental, economical and technological capability factors, is important in strategic decision-making effort that affect the profitability of the closed loop supply chain. In this paper, we adopted an improved system dynamics methodology to tackle strategic issues that affect various performance measures, like market, time/cost, environment etc., for closed loop supply chains. After studying real life implementation issues in CLSC design, we presented guidelines for the PBM (Participative Business Modeling) methodology and presented its extension for the strategic dynamic system modeling of return chains. Finally, we demonstrated the measurement of operational performance by extending SD (system dynamic) application to closed loop supply chain management.

Dynamic Walking of a Biped Robot

  • 마영;손영익;김갑일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.138-140
    • /
    • 2004
  • This paper mainly deals with the dynamic walking of a biped robot. At first, in order to walk in various environments, it is desirable to adapt to such ground conditions with a suitable foot motion, and maintain the stability of the robot by a smooth hip motion. A method to plan a walking pattern consisting of a foot trajectory and a hip trajectory is presented. The effectiveness of the proposed method is illustrated by simulation results. Secondly, the paper brings forward a balance control technique based on off-line walking pattern with real-time modification. At last, the concept of Zero Moment Point (ZMP) is used to evaluate dynamic stability.

  • PDF

순환 신경망을 이용한 보행단계 분류기 (A Gait Phase Classifier using a Recurrent Neural Network)

  • 허원호;김은태;박현섭;정준영
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.518-523
    • /
    • 2015
  • This paper proposes a gait phase classifier using a Recurrent Neural Network (RNN). Walking is a type of dynamic system, and as such it seems that the classifier made by using a general feed forward neural network structure is not appropriate. It is known that an RNN is suitable to model a dynamic system. Because the proposed RNN is simple, we use a back propagation algorithm to train the weights of the network. The input data of the RNN is the lower body's joint angles and angular velocities which are acquired by using the lower limb exoskeleton robot, ROBIN-H1. The classifier categorizes a gait cycle as two phases, swing and stance. In the experiment for performance verification, we compared the proposed method and general feed forward neural network based method and showed that the proposed method is superior.