• 제목/요약/키워드: forward dynamic

검색결과 483건 처리시간 0.031초

팔 근육운동의 파라미터 분석 (Parameter Analysis of Muscle Models for Arm Movement)

  • 김래겸;탁태오
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.155-161
    • /
    • 2008
  • Muscle force prediction in forward dynamic analysis of human motion depends many muscle parameters associated with muscle actuation. This research studies the effects of various parameters of Hill type muscle model using the simple hand raising motion. Motion analysis is carried out using motion capture system, and each muscle force is recorded for comparison with muscle model generated muscle force. Using Hill type muscle model, muscle force for generating the same hand rasing motion was setup adjusting 5 activation parameters. The test showed the importance of activation parameters on the accurate generation of muscle force.

  • PDF

쌍동선의 운동 및 파랑하중 해석 (Analysis of Motions and Wave Loads of Twin-Hull Ships in Waves)

  • 구자삼;조효제;이승철
    • 한국해양공학회지
    • /
    • 제13권4호통권35호
    • /
    • pp.132-142
    • /
    • 1999
  • A three-dimensional linearised potential theory is presented for the prediction of motions and dynamic structural responses of twin-hull ships travelling with forward speed in regular waves. Comparisons between theoretical and experimental results are shown for the motion responses and lateral wave loads of an ASR(anti-submarine rescue) catamaran. In general, good agreement between theory and experiment is found except for some discrepancies that are believed to be caused by neglect of forward speed effects on free surface.

  • PDF

전류제어 능동 클램프 포워드-플라이백 컨버터의 동특성 해석 및 제어회로 설계 (Dynamic Analysis and Control Design of Current-Mode Controlled Active-Clamp Forward-Flyback Converter)

  • 임원석;강용한;최병조
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.374-377
    • /
    • 2002
  • This paper presents dynamic analyses and control design of the current-mode controlled active-clamp forward-flyback converter. The circuit averaging technique is used to extract the small-signal circuit model for the power stage From the small-signal circuit model of the power stage, the open-loop transfer functions are derived and used for the compensation design. The analysis results are verified using an experimental converter that delivers a 3.3V/10A output from a $40\~60V$ input source.

  • PDF

전신 진동운동기 사용시 인체에 대한 생체역학적 특성 분석을 위한 가상 골격계 모델의 개발 및 검증 (A Study ef Biomechanical Response in Human Body during Whole-Body Vibration through Musculoskeletal Model Development)

  • 최현호;임도형;황선홍;김영호;김한성
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.155-163
    • /
    • 2008
  • This study investigated biomechanical response through the 3-dimensional virtual skeletal model developed and validated. Ten male subjects in standing posture were exposed to whole body vibrations and measured acceleration on anatomical of interest (head, $7^{th}$ cervical, $10^{th}$ thoracic, $4^{th}$ lumbar, knee joint and bottom of the vibrator). Three dimensional virtual skeletal model and vibration machine were created by using BRG LifeMOD and MSC.ADAMS. The results of forward dynamic analysis were compared with results of experiment. The results showed that the accuracy of developed model was $73.2{\pm}19.2%$ for all conditions.

Fault Tolerant Routing Algorithm Based On Dynamic Source Routing

  • Ummi, Masruroh Siti;Park, Yoon-Young;Um, Ik-Jung;Bae, Ji-Hye
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.223-224
    • /
    • 2009
  • A wireless ad hoc network is a decentralized wireless network. The network is ad hoc because each node is willing to forward data for other nodes, and so the determination of which nodes forward data is made dynamically based on the network connectivity. In this paper, we proposed new route maintenance algorithm to improve the efficiency and effective in order to reach destination node. In this algorithm we improve existing route maintenance in Dynamic Source Routing protocol, to improve the algorithm we make a new message we call Emergency Message (EMM). The emergency message used by the node moved to provide information of fault detection.

정.역 구동 방식 수도 휠체어의 인체공학적 성능 분석 (Biomechanical Evaluation of a Manual Wheelchair with Forward. Reverse Propulsion)

  • 신응수;이희태;안성철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.464-469
    • /
    • 2001
  • This work provides the biomechanical evaluations of a manual wheelchair with a bi-directional driving system. The new propulsion strategy can be accomplished by employing a special gear system that converts the oscillatory motion of a handrim into the unidirectional output motion of a wheel. A main feature of the forward. backward propulsion is to supply continuous driving torque without break. Motion. analysis has been performed through 2-dimensional image processing for measuring the kinematic properties of the upper arm and fore arm. Then, the inverse dynamics analysis has been done for obtaining the joint torques, the handrim forces and input/output powers. Results show that the output power by the forward. reverse propulsion is almost twice as much as that by conventional propulsion. Also, the new propulsion is expected to reduce the fatigues and injuries at arm joints by employing more muscle groups for movement. In conclusion, the forward. reverse propulsion can greatly improve the performances of manual wheelchairs by providing better mobility as well as by guaranteeing several advantages from a biomechanical viewpoint. Future development of a manual wheelchair optimized for the bi-directional propulsion will further improve the propulsion performances.

  • PDF

신경망 기법을 이용한 스튜어트 플랫폼의 순기구학 추정 (The Estimation for the Forward Kinematic Solution of Stewart Platform Using the Neural Network)

  • 이형상;한명철;이민철
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.186-192
    • /
    • 1999
  • This paper introduces a study of a method for the forward kinematic analysis, which finds the 6 DOF motions and velocities from the given six cylinder lengths in the Stewart platform. From the viewpoints of kinematics, the solution for the inverse kinematic is easily found by using the vectors of the links which are composed of the joint coordinates in base and plate frames, to act contrary to the serial manipulator, but forward kinematic is difficult because of the nonlinearity and complexity of the Stewart platform dynamic equation with the multi-solutions. Hence we, first in this study, introduce the linear estimator using the Luenberger's observer, and the estimator using the nonlinear measured model for the forward kinematic solutions. But it is difficult to find the parameter of the design for the estimation gain or to select the estimation gain and the constant steady state error exists. So this study suggests the estimator with the estimation gain to be learned by the neural network with the structure of multi-perceptron and the learning method using back propagation and shows the estimation performance using the simulation.

  • PDF

직립자세에서의 전방향 동요 시 균형회복 기전 (Balance Recovery Mechanisms Against Anterior Perturbation during Standing)

  • 태기식;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권5호
    • /
    • pp.435-442
    • /
    • 2003
  • In this paper, biomechanical aspects of dynamic대학교postural responses against forward perturbations were experimentally determined simultaneous measurements of joint angles, accelerations. EMG activations, center of pressure(CoP) movements and ground reaction forces(GRF), Thirteen young healthy volunteers, stood on a flat platform, were translated into the forward direction by an AC servo-motor at two separate velocities(0.1m and 0.2m/s). In order to recover postural balance against the forward perturbation, joint motions were observed in the sequence of the ankle dorsiflexion, the knee flexion and then the hip flexion during the later acceleration phase. Both acceleration patterns at the heel and the sacrum were shown the forward acceleration pattern during the later acceleration phase and early of constant velocity phase as increasing platform velocity, respectively. Tibialis anterior(TA) for the ankle dorsiflexion and biceps femoris(BF) for the knee flexion. the primary muscle to recover the forward perturbation, was activated during the half of acceleration phase. Ankle strategy was used for slow-velocity perturbation, but mixed strategy of both ankle and hip used for the fast-velocity perturbation. In addition, parameters of perturbation such as timing and magnitude influenced the postural response against the perturbation.

유체 순환 혈압 시뮬레이터의 구현 (Implementation of The Fluid Circulation Blood Pressure Simulator)

  • 김철한;이규원;남기곤;전계록
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.768-776
    • /
    • 2007
  • A new type of the fluid circulation blood pressure simulator was proposed to enhance the blood pressure simulator used for the development and evaluation of automatic sphygmomanometers. Various pressure waveform of fluid flowing in the pipe was reproduced by operating the proportional control valve after applying a pressure on the fluid in pressurized oil tank. After that, appropriate fluid was supplied by operating the proportional control valve, which enabled to reproduce various pressure wave of the fluid flowing in the tube. To accomplish this work, the mathematical model was carefully reviewed in cooperating with the proposed simulator. After modeling the driving signal as input signal and the pressure in internal tube as output signal, the simulation on system parameters such as internal volume, cross-section of orifice and supply pressure, which are sensitive to dynamic characteristic of system, was accomplished. System parameters affecting the dynamic characteristic were analyzed in the frequency bandwidth and also reflected to the design of the plant. The performance evaluator of fluid dynamic characteristic using proportional control signal was fabricated on the basis of obtained simulation result. An experimental apparatus was set-up and measurements on the dynamic characteristic, nonlinearity, and rising and falling response was carried out to verify the characteristic of the fluid dynamic model. Controller was designed and thereafter, simulation was performed to control the output signal with respect to the reference input in the fluid dynamic model using the proposed proportional control valve. Hybrid controller combined with an proportional controller and feed-forward controller was fabricated after applying a disturbance observer to the control plant. Comparison of the simulations between the conventional proportional controller and the proposed hybrid simulator indicated that even though the former showed good control performance.

동적 유입류 모델을 이용한 회전익기 전진비행 공탄성 해석 (Aeroelastic Analysis of Rotorcraft in Forward Flight Using Dynamic Inflow Model)

  • 이준배;유승재;정민수;이인;김덕관;오세종;이관중
    • 한국항공우주학회지
    • /
    • 제39권4호
    • /
    • pp.297-305
    • /
    • 2011
  • 본 논문에서는 비정상 공기력을 모델링하기위해 Peters-He의 동적유입류모델을 고려한 2차원 준정상 공기력 이론을 적용하여 회전익기 전진비행에 대한 공탄성 해석을 수행하였다. 또한, 공력탄성학적 안정성 해석을 수행하기 위하여, 전진비행 시 주기적인 특성을 갖는 비선형 정적 트림 해를 얻기 위해 동체 평형을 고려한 연계 트림 해석을 통한 완전 유한요소 방정식을 이용하였다. 동적유입류모델의 공력과 구조 특성을 검증하기 위해 유도 유입류와 깃끝에서의 구조변형을 타 수치해석결과와 비교하였다. 또한, 공탄성 안정성을 검증하기 위해 두 모델의 래그 감쇠값을 비교하였다.