• Title/Summary/Keyword: forming technology

Search Result 3,564, Processing Time 0.026 seconds

Determination of Position for Reinforcement Blank at Simultaneous Forming Analysis of Automotive Front Side Member (자동차용 프론트 사이드 멤버의 일체복합성형해석 및 보강판재의 위치결정)

  • Yoon, S.J.;Kim, H.Y.;Kim, K.H.;Kim, J.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.178-182
    • /
    • 2008
  • Automotive manufacturers lay their eyes on the new manufacturing technologies because of the strengthened competition. Among them, a simultaneous forming is one of the innovative forming technologies to be able to reduce production time and cost. Several parts can be simultaneous manufactured by process, while the conventional stamping demands the same number of die sets with the number of parts. In this study, the automotive front side member was manufactured by the simultaneous forming. The position and the size of initial blank were determined by forming analysis and try-outs, and the blank movement during the forming was controlled by introducing the pilot pin.

  • PDF

Warm Incremental Forming with Local Heating Apparatus (국부가열장치를 이용한 온간 무금형 점진 성형)

  • Kim, S.W.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.349-353
    • /
    • 2008
  • A fundamental study on warm incremental forming of a magnesium alloy sheet has been carried out. In order to enhance the incremental formability of the magnesium alloy sheet, a local heating device was newly designed and manufactured. Through the incremental forming tests of AZ31 under various forming conditions, the effects of process parameters such as the temperature, feeding depth per cycle, and inclination angle on the incremental formability of AZ31 were investigated. In addition, conventional FLDs at elevated temperatures were constructed experimentally and applied to predict the forming failure.

  • PDF

Modeling of Superplastic Forming Process for Aluminum Alloys with Strain Hardening Effect (가공경화를 고려한 알루미늄 함금의 초소성성형공정해석)

  • 권용남;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.172-184
    • /
    • 1996
  • Superplastic forming of thin sheet into complex shape is an important manufacturing process especially in aerospace industry. The main interest in modeling the superplastic forming process is to predict the forming pressure cycle to maintain optimum strain rate and the resulting thickness distribution. Many researchers have attemped to model superplastic forming using the various techniques including finite element method. But in most of their researches have disregarded the strain hardening effect which which occurs in several superplastic materials. In this study ABAQUS finite element code was used for prediction of process variables for axisymmetric cup forming of Supral 100 and 7075Al alloys considereing strain hardening. The performance of numerical results were compared with the experimental results.

  • PDF

Process Analysis and Design in Forming of Bearing Rings by the FEM(II) (유한요소법을 활용한 궤도륜의 프레스 성형공정 설계(II))

  • 변상규;김태호;강범수;김완두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.19-30
    • /
    • 1995
  • The analysis had been already completed to detect forming defects for the forming processes of C/R bearing rings. But some unpredicted problems were found through the experiments. So expert redesigned new forming processes to prevent the problems and new analysis was began according to the new processes to find faults for the processes. The forming processes consist of 1 for the outer ring. 6 inner ring. The thickness of metal sheet used is changed to 1.5mm from 1.6mm. Elasto-plastric finite element method is applied to involve the effect of spring back . The most representative alteration is forming of two predents to assist later forming . Thining and distribution of high residual stress are derived from the results of simulations. It is confirmed that the industry expert agree the possiblilty of defects dervied from the new FEM results.

  • PDF

Contouring Tool Path Generation for Dieless CNC Forming using STL Offset (STL offset을 이용한 다이레스 CNC 포밍용 등고선 공구경로 생성)

  • Kang Jae-Gwan;Choi Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.191-198
    • /
    • 2006
  • Dieless CNC forming is an innovative technology which can form various materials with complex shape by numerically controlled incremental forming process. In this paper, a method of NC tool path generation based on an STL file for dieless CNC forming is proposed. Tool trajectory adopts the principle of layered manufacturing in rapid prototyping technology, but it is necessary to consider STL offset because of the ball shaped tool with a radius. Vertex offset method which enables to compute offset STL directly is engaged for STL offset. The offseted STL is sliced by cutting planes to generate contouring tool path. Algorithm is implemented on a computer and experimented on a dieless CNC forming machine to show its validity.

SELECTED ADVANCES IN SHEET MATERIAL FORMING

  • Lee, Daeyong-
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.1-9
    • /
    • 1994
  • Three recent developments made at Rensselaer in sheet material forming processes are briefly reviewed in this paper. These advances represent three broad disciplines of Process Simulation, Forming Processes, and Computer-Aided Measurement Methods. The first development deals with simple and quick computer simulation of 2D sheet forming process without depending on popular finite element analysis methods. An analytical method based on a thin shell theory accounts for bending and unbending effects, and is capable of simulating practical sheet metal forming processes under the plane strain condition. The second area is concerned with innovative methods to improve formability of sheet materials by temperature gradient forming. The drawing limit is increased by such an improved temperature gradient forming process. The third and final area deals with a totally new experimental technique to capture 3D geometry data and measure strain distributions of sheet metal parts using a digital 35mm SLR camera.

The Effects of Forming Defects on the Mechanical Properties of Thixoformed Aluminum Parts for Automobile (반응고 성형된 자동차용 알루미늄 합금 부품의 기계적 강도 특성에 미치는 성형 결함의 영향)

  • Kim, C.H.;Choi, B.H.;Lee, S.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.293-295
    • /
    • 2007
  • The thixoforming process become important for forming automobile parts. But, the thixoforming process cannot still prevent to forming defects such as pores and shrinkage which reduce mechanical properties of automobile parts. Therefore, it is necessary to analyze the correlation between forming defects and mechanical properties. However, it is difficult to get data about relations between mechanical properties and forming defects in thixoformed aluminum alloy parts. In this study, three parts of aluminum thixoformed knuckle have been analyzed using tensile test and computer tomography(CT scan). Experimental results showed that the elongation properties of thixoformed aluminum parts were significantly dependent on size and number of forming defects.

  • PDF

Deformation Characteristics in Sheet Metal Forming with Small Ball (소형 구를 이용한 박판 성형에서의 변형특성)

  • 심명섭;박종진
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2001
  • Recently, the technology of incremental forming for sheet metal components has drawn attention for small-batch productions. In the present investigation, a forming tool containing a freely-rotating ball was developed and applied to forming of various shapes with full annealed Al 1050 sheet. Deformation characteristics occurring during forming with this tool was examined through FEM analysis and grid measurement. It was found that deformation modes developed along a straight path and around a corner are close to those of plane-strain and equi-biaxial stretching, respectively, and that cracks occur mostly at corners for the same depth of tool. FEM analysis was successfully applied to this special type of forming process and provided comparable results to the measurements from experiment.

  • PDF

Forming Analysis on the Tubular Hydroforming of Side Member (Side Member 관재 하이드로포밍 성형해석)

  • Park J. H.;Choi Y. C.;Oh Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.54-58
    • /
    • 2001
  • In recent years, hydroforming technology has been one of the most important technology in automotive industry in the points of weight saving, cost reduction and qualify improvement. However, compared with traditional metal forming technology, hydroforming has much fewer information in experience and empirical knowledge. But we don't have my sufficient time and money to produce hydroforming products using real blank directly Therefore Simulation is essential in hydrofonrung technology development. In this paper, we simulate the side member as the tubular hydroforming technology. The manufacturing process of side member' consists of pre_bending, pre_forming, and hydroforming of a thin tube. Variables such as internal pressure, end feeding, and tool geometry are optimized to improve the forming safety. And we simulate side member according to several lubricant conditions. from those simulations, we find that strain distributions can be reduced well by internal pressure and end feeding control, and lubrication is the most important thing in hydroforming process.

  • PDF

THE DEVELOPMENT OF SUS 316L BONE PLATE FORGING PROCESS BY COMPUTER SIMULATION TECHNOLOGY

  • Hwang Robert S.;Jou Jin-Long;Wang Kai-Hung;Chen Yi-An
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.36-39
    • /
    • 2003
  • Due to the strength and biocompatibility requirement, the stainless steel SUS 316L is widely used for trauma internal fixation device. SUS 316L can be hardened and strengthened only by cold work. In this work, the material compression test is performed both in laboratory and computer simulation by a FEM analysis software DEFORM to correlate the hardness to strain. This data is then used for preform design and predict the hardness of the finish bone plate forging. Finally, we compared the hardness between the actual forging and computer analysis results. Although the predicted hardness from computer simulation. is 55HV higher than the final forging sample, we can get good compatibility on the hardening tendency of cold forging.

  • PDF