• Title/Summary/Keyword: forming pressure

Search Result 667, Processing Time 0.025 seconds

Comparison of Forming force on forward and Backward Flow Forming for Combustion Chamber (연소기를 위한 전후방 유동성형에서의 성형력 비교)

  • Nam, Kyoun-Go;Cho, Cheon-Hwey;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.34-39
    • /
    • 2006
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming force and enhanced mechanical for a good finished part, compared with other method formed parts. Especially, the flow forming is suitable for making high precision thin walled cylinders, such as rocket motor cases, combustion chamber, hydraulic cylinders and high-pressure vessels and so on. In this paper, finite element analysis of three-roller forward and backward flow forming for combustion chamber is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forming forces of forward flow forming on several forming depth and feed rate conditions are compared with those of backward flow forming.

A Finite Element Analysis of Electromagnetic Forming for Tube Expansion (전자기 확관성형의 유한요소 해석)

  • 이성호;이동녕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1872-1885
    • /
    • 1991
  • The analysis of electromagnetic forming process consists of the analysis of the electric circuit and the dynamic deformation analysis. The purpose of the electric circuit analysis is to calculate the magnetic pressure and to apply it to the deformation analysis. Some investigators performed the analysis assuming the pressure distribution in longitudinal direction. However there was a difference between the calculated and experimental results. The difference mainly came from the assumption of the pressure distribution. One must know the magnetic field distribution in an actual situation for the analysis to be less erroneous. In this work the electromagnetic field analysis was performed by the finite element method to obtain a more realistic pressure distribution. A better agreement between the calculated and experimental results was obtained. It became possible to predict the deformation behavior of the workpiece of finite length.

Effect of Applying Pressure of High Pressure Diecasting Process Using Salt core (용탕단조 시 저온염코어 적용 가압력의 영향)

  • Lee, Jun-Ho;Moon, J.H.;Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.136-140
    • /
    • 2008
  • A new concept of salt core, a melting temperature of which is lower than the solidus temperature of cast alloy, was introduced to produced an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The main goal of this study is to develop a new integrated net-shape forming technology using fusible core of lower melting temperature than that of a casting alloy. This integrated net-shape forming technology would be very successful and cost-effective for producing the integrated products having a complicated inner shape or requiring under-cut. The technology for measuring and evaluating a various property of fusible core such as a thermal conductivity and thermal expansion coefficient, melting temperature was established. Also, the work space can be cleaned without a pollution inducing products.

전자기 성형에서의 테이퍼진 지속집중기의 자기압력에 관한 연구

  • Choe, Jae-Chan;Jo, Yong-Cheol;Lee, Jong-Su;Hwang, Un-Seok;Kim, Nam-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.14-27
    • /
    • 1990
  • Electromagnetic Pulse Forming is the one of the high velocity forming method. When the electric energy which is charged in the capacitor bank is suddenly discharged into the electromagnetic coil, the high magnetic field occurs at the airgap between the electromagnetic coil and workpiece. Thus we can obtain the high electromagnetic pressure, which is proportional to the square of magnetic flux density. This is the basic principle of the electromagnetic pulse forming. In this paper, the equivalent L-R-C circuit is derived by computing the magnetic field and its loss of the total system. Thus, the values of the magnetic flux density and pressure can be obtained from the equation of this circuit. As a result, the computed and measured values of the maximum magnetic flux density and pressure are compared and the characteristics of the tapered field shaper are further discussed as follows; 1) The strength of magnetic flux density and pressure can be controlled by the charged energy and the size of the airgap between the inner field shaper and the workpiece. 2) During the design of the tapered field shaper, the penetration of the magnetic flux through the sharp edge should be considered.

  • PDF

A Study on Development of Pinhead Forming Process using Hinge Belt Typed Chipconveyor for Machine Tools (공작기계용 힌지벨트형 칩컨베이어 핀헤드 성형공정 개발에 관한 연구)

  • Park, Dong-Geun;Choi, Chi-Hyuk;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-32
    • /
    • 2010
  • This paper presents an investigation into the pinhead forming process with the objective of finding the optimal forming conditions. In order to this, the orbital forming analysis of a heading MIG was carried out using the explicit finite element method. Relationships between temperature by forming of load and stresses, rake angle by forming final shape and stress distribution were investigated through analysises in order to find an efficient solution. As a result, the higher temperature and orbital rake angle were the better forming conditions.

Development of Tube End-forming Process using Roll Die (롤다이를 이용한 튜브 축관공정 개발)

  • Kim, Yeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.121-126
    • /
    • 2011
  • An accumulator placed on the refrigerant cycle pipe lines is a part to relax fluctuations of pressure within the pipe lines and stabilize refrigerants flowed into pipe. The accumulator has been mainly manufactured by the process of tube spinning using CNC(Computer Numerical Control) lathe. However, this process has the defects which are low productivity per hour and high cost. For that reason, tube end-forming using roll die is actively being developed, recently. The purpose of this study is to develope the tube end-forming process using roll die in order to manufacture the accumulator for the refrigeration pipe lines. First, the process design of tube end-forming was performed based on specification of product, and then was verified with FE analysis. Also, the effects of friction coefficient and revolution speed of roll die on forming load were investigated. The analytical results were applied in the final process design of tube end-forming. Finally, tube end-forming test was carried out to verify the validity of the FE analysis and the process design.

Application of Partial-size Die forming Process to Semiellpisoidal Segment Head of the Pressure Vessel (압력 용기 반타원형 분할 경판의 제작에 있어서 부분 금형 성형 공정의 적용)

  • Kwon I. K.;Youn J. G.;Lee W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.97-100
    • /
    • 2005
  • The purpose of this study is to apply the partial-size die forming process to actual segment head farming process of semi-ellipsoidal heads and to verify the availability of the suggested forming method. The initial curvature for the preliminary forming process was determined through anticlastic behavior of plate bending and the partial-size die for final forming was designed based on the results of springback analysis using F.EA. From the results of actual forming, it was concluded that die design was appropriate and proposed forming process would be successfully applied to actual forming jobs.

  • PDF

Counter-Pressure Deep Drawing and its Application in the Froming of Automobile Parts

  • Hiroyuki-Amino;Kazuhiko-Nakamura;Takeo-Naragawa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.2
    • /
    • pp.9-21
    • /
    • 1992
  • Sheet metal forming with hydraulic counter-pressure has several advantages compared with conventional drawing, such as higher forming limits, higher accuracy of formed parts and the achievement of complicated formed shapes. About 50 special press machines have already been used in Japan for manufacturing lighting reflectors, aircraft parts and automobile parts. This report descirbes the techniques and the equipment used in the application of process.

  • PDF

Hot Air Forming Analysis of Automotive Rear Sub Frame using Aluminum Tube (알루미늄 튜브를 이용한 자동차 리어 서브 프레임의 열간가스 성형해석)

  • Kim, H.Y.;Yoon, S.J.;Lee, K.D.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.26-29
    • /
    • 2008
  • Recently, the hydroforming of high strength aluminum tubes has many studies and applications in manufacturing industry, especially in automotive industry. But high strength aluminum tube has limited expansion capability at most 15% at normal temperature. New manufacturing process, called hot air forming, is introduced to apply aluminum tube to the automotive sub frame components which have complex shape and require high expansion ratio about 40%. The process is carried out at the elevated temperature above $500^{\circ}C$, so numerous material properties and process parameters related to high temperature should be investigated and determined to get a sound product. In this paper, the hot air forming process of automotive sub frame was investigated. The effect of the forming parameters such as the temperature of tool, axial feeding and gas pressure are analyzes by using explicit finite element method.

  • PDF