• Title/Summary/Keyword: forming elements

Search Result 444, Processing Time 0.019 seconds

Evaluation of the Changes in Local Paper Structure and Paper Properties Depending on the Forming Elements Types (탈수소자에 의한 종이 미세구조 및 물성 변화 평가)

  • Sung, Yong-Joo;Keller, D. Steven
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • The influence of different forming elements on the local paper structure and the related paper properties was investigated in this study. Specifically, a conventional papermaking foil system and a velocity induced drainage (VID) system were compared. The study involved the analysis of the product samples obtained from the commercial machine trials. The paper samples produced with VID forming systems showed better formation. The deterministic patter in the local structural profile map of the Foil samples indicated the structure of foil samples was more supple after forming process and then easier to be marked by various fabrics such as wet pressing fabric. The higher bulk was observed in the VID samples, which resulted in higher scattering coefficient, lower ZDT strength, and higher bending stiffness.

Development of FE Analysis Scheme for Milli-Part Forming Using Grain and Grain Boundary Element (입자요소를 이용한 미세 박판 부품의 유한요소 해석 기법 개발)

  • 구태완;김동진;강범수
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.439-446
    • /
    • 2002
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. When scaling down a metal forming process, the dimensions of the workpiece decrease but the microstructure of the workpiece remains the similar. Since the dimensions of the workpiece are very small, the microstructure especially the grain size will play an important role in micro forming, which is called size effects. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for visco-elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

Study on Application of Multi-point Dieless Forming for Shipbuilding (다점 무금형 성형의 조선 적용 연구)

  • Ha S. M.;Shin J. W.;Han Y. S.;Han M. S.;Choe W. H.;Lee H. W.;Park J. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.152-155
    • /
    • 2005
  • A method of three-dimensional curved surface generation was studied for multi-point dieless forming (MPDF) in the shipbuilding industry. Three-dimensional coordinates of punch elements were obtained from objective surfaces using a proprietary CAD program. MPDF surfaces were generated by adjusting the height of punch elements in accordance with the coordinates. Some problems, such as collision of punch elements and contact between plates and punch bodies, were anticipated from the analysis of the results. A twisted surface was formed successfully by MPDF in a laboratory scale, which suggests possibility of application of the technology to the shipbuilding industry.

  • PDF

Multi-Point Dieless Sheet Forming Technology Combined with Fluid forming (유체성형과 결합한 다점 무금형 판재 성형기술)

  • 박종우;홍예선;양승훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.58-61
    • /
    • 2002
  • A new concept of dieless sheet forming technology is proposed in this study to overcome the drawback of conventional dieless forming technology. For this purpose, dual points contact of the conventional punch system, which is a primary cause of surface defects, is replaced to single point contact using technology combined with fluid forming. It is expected that the advanced system may lead to easy displacement control of multi-punch elements, reducing surface defects, and increasing decision and forming limits. The reduced number of punch elements also saves the cost of the equipment. In addition, the new technology can be utilized for deep drawing as well as two- or three-dimensional curved surface forming, and thereby become multi-functional and multi-purpose differently from the conventional technology.

  • PDF

Efficiency Enhancement in Sheet Metal Forming Analysis with a Mesh Regularization Method (격자 정방형화 방법을 이용한 박판 성형해석의 효율개선)

  • Yoon, J.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.401-407
    • /
    • 2003
  • This paper newly proposes a mesh regularization method for the enhancement of the efficiency in sheet metal forming analysis. The regularization method searches for distorted elements with appropriate searching criteria and constructs patches including the elements to be modified. Each patch is then extended to a three-dimensional surface in order to obtain the information of the continuous coordinates. In constructing the surface enclosing each patch, NURBS(Non-Uniform Rational B-Spline) surface is employed to describe a three-dimensional free surface. On the basis of the constructed surface, each node is properly arranged to form unit elements as close as to a square. The state variables calculated from its original mesh geometry are mapped into the new mesh geometry for the next stage or incremental step of a forming analysis. The analysis results with the proposed method are compared to the results from the direct forming analysis without mesh regularization in order to confirm the validity of the method.

Closed-loop Sheet Metal Forming Using Dieless Forming Apparatus (무금형 성형장치를 이용한 폐루프 판재성형)

  • 양승훈;박종우;홍예선;양현석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.62-65
    • /
    • 2002
  • A dieless forming system which consists of hydraulic punch elements and elastomer/fluid pads, was developed for sheet metal forming. 2-D curved surface forming was carried out using open-loop, closed-loop, and repeated forming method. Closed-loop exhibited higher decision than open-loop forming. Repeated forming also showed reduced spring back and possibility of high precision.

  • PDF

Design of Forming Rolls using Finite Element Analysis (유한요소해석을 이용한 성형 롤 설계)

  • Kim, Kwang-Heui
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.75-81
    • /
    • 1999
  • Roll forming process is simulated with a commercial FEM code LS-DYNA. The rolls are treated as rigid bodies rotating with a constant angular velocity. The strip and the rolls are modeled with 4-node plate elements. It is assumed that the nodes along the front end of the strip move along paths given by sine functions. It is found that the analysis can be applied to the optimal design of forming rolls. With these analyses, it is expected that forming defects can be avoided and process development efforts can be reduced.

  • PDF

Development of FE Analysis Scheme for Milli-Part Forming Using Grain Element (유한요소법의 입자요소를 이용한 박판 성형해석)

  • 구태완;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.439-442
    • /
    • 2003
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

  • PDF

Efficiency enhancement of sheet metal forming analysis with a mesh regularization method (격자 정방형화 방법을 이용한 박판 성형해석의 효율개선)

  • Yoon, J.H.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.339-342
    • /
    • 2003
  • This paper newly proposes a mesh regularization method for the enhancement of the efficiency in sheet metal forming analysis. The regularization method searches for distorted elements with appropriate searching criteria and constructs patches including the elements to be modified. Each patch is then extended to a three-dimensional surface in order to obtain the information of the continuous coordinates. In constructing the surface enclosing each patch, NURBS(Non-Uniform Rational B-Spline) surface is employed to describe a three-dimensional free surface. On the basis of the constructed surface, each node is properly arranged to form unit elements as close as to a square. The analysis results with the proposed method are compared to the results from the direct forming analysis without mesh regularization in order to confirm the validity of the method.

  • PDF

Progress in Sheet Metal Forming Technology (금속 판재 성형 기술의 진보)

  • 박종우
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.223-230
    • /
    • 2002
  • Matched die forming technology has been used widely as a sheet metal forming method for a long time. This conventional method, however, needs a high cost and long delivery time to prepare a set of matched dies or, in many cases, several sets of dies. For more than ten years, some alternative methods using single die or non-matched dies have been developed and applied practically in various fields of industry. Elasto-forming, fluid forming, hydro-forming, and blow forming are some examples of these new methods. Recently, a dieless sheet forming technology using a reconfigurable matrix of punch elements has been developed, and started to be used in some industries such as aircraft and railroads. A new concept of dieless forming technology has also been proposed to overcome the drawback of the conventional dieless forming technology.