• 제목/요약/키워드: forming angle

검색결과 357건 처리시간 0.031초

수처리 시설물에 적용되는 섬유패널 배면부의 입체 성형 각도에 따른 부착 성능 연구 (A Study on the Adhesion Performance of Solid Forming Angle at Fiber Panel in the Water Supply Facility)

  • 윤준노;박완구;최수영;김동범;김병일;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.171-172
    • /
    • 2018
  • The purpose of this study is to confirm the adhesion performance of the three - dimensional forming fiber panels by the dimensional forming angle. As a result of applying the three dimensional surface shape to the back side of the fiber panel and testing the adhesion strength by the three dimensional forming angle, it was confirmed that the bonding strength of the specimens to which the dimensional molding was applied was higher than that of the non dimensional molding. In addition, the highest adhesion strength was confirmed in a specimen having a three-dimensional forming angle of 70 °.

  • PDF

전단스피닝에서 가공깊이와 리드각이 성형력에 미치는 영향 (The Effects of Forming Depth and Lead Angle on Forming Force of Shear Spinning)

  • 염성호;남경오;박현진;홍성인
    • 한국추진공학회지
    • /
    • 제11권1호
    • /
    • pp.27-33
    • /
    • 2007
  • 각이 있는 얇은 콘 제품을 생산하기 위한 가공법으로는 전단 스피닝에 의한 성형방법이 많이 이용되고 있으며 이는 다른 가공방법에 비해 성형에 필요한 힘이 적게 들고 전단 스피닝에 의해 가공된 제품의 기계적인 강도가 우수하며 표면 품질이 우수하기 때문이다. 따라서 전단 스피닝 기술은 산업현장에서 폭 넓게 이용되고 있다. 특히 전단 스피닝과 유동성형은 자동차, 항공, 방위산업에 자주 이용되고 있다. 본 논문에서는 전단 스피닝에 대한 유한요소해석을 통해 가공깊이와 롤의 리드각이 성형력에 미치는 영향을 살펴보았다. 다양한 가공깊이와 롤의 리드각 조건에서 축 및 반경방향의 성형력을 구하였다.

공작기계용 힌지벨트형 칩컨베이어 핀헤드 성형공정 개발에 관한 연구 (A Study on Development of Pinhead Forming Process using Hinge Belt Typed Chipconveyor for Machine Tools)

  • 박동근;최치혁;이춘만
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.27-32
    • /
    • 2010
  • This paper presents an investigation into the pinhead forming process with the objective of finding the optimal forming conditions. In order to this, the orbital forming analysis of a heading MIG was carried out using the explicit finite element method. Relationships between temperature by forming of load and stresses, rake angle by forming final shape and stress distribution were investigated through analysises in order to find an efficient solution. As a result, the higher temperature and orbital rake angle were the better forming conditions.

전조가공을 이용한 기어의 치형오차수정에 관한 연구 (A Study on Correction of the Gear Tooth Profile Error by Finish Roll Forming)

  • 류성기
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.159-166
    • /
    • 2005
  • This study deals with the correction of gear tooth profile error by finish roll forming. First, we experimentally confirmed that the tooth profile error is a synthesis of the concave error and the pressure angle error. Since various types of tooth profile errors appear in the experiments, we introduced evaluation parameters for rolling gears to objectively evaluate profile quality. Using these evaluation parameters, we clarified the relationship among the tooth profile error, the addendum modification factor (A. M. factor), and the tool loading force. We verified the character of concave error, pressure angle error, tool loading force and number of cycles of finish roll forming by using a forced displacement method. This study makes clear that tool loading force and number of cycles of finish roll forming are very important factors that affect involute tooth profile error. The results of the experiment and analysis show that the proposed method reduces concave and pressure angle errors.

열간전조공정의 공정결함 분석을 위한 해석적 연구 (Numerical Study on Defect Analysis of Hot Cross Wedge Rolling Process)

  • 이형욱
    • 융복합기술연구소 논문집
    • /
    • 제3권2호
    • /
    • pp.17-21
    • /
    • 2013
  • Hot cross wedge rolling process as an incremental forming has many advantages such as the material usage, the short process time, the automatic equipment line and the low forming load. However, it occurs some defects such as the surface groove, the axis warping and the Mannesmann hole. In this paper, the defect of the Mannesmann hole was carried out. Finite element analysis was utilized to reveal the stress distribution, the rotation of the specimen and the change of section profile. Cross wedge rolling experiment was also conducted on the generation of the Mannesmann hole. It was demonstrated according to the spreading angle with respect to the various types of material. In the view point of metal flow, the smaller forming angle and the larger spreading angle increase opportunities of the defect hole generations.

  • PDF

다단 샤프트 제조용 크로스롤 금형 선단부의 형상설계에 관한 연구 (A Study on the shape Design of the Forward Forming Region in Cross Rolling of Multi-Step Shaft)

  • 김익삼
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.178-187
    • /
    • 1999
  • The Cross rolling between flat jaws, as a kind of hot forging, is the forming method to make the axisymmetric multi-step shaft by its rotation and pressure between flat jaws which move in opposite direction. The purpose of this study is to propose the optimal geometric data for shape development of the forward forming region. All data described on this paper are quantified by experiment from initial shape design to final shape development. As the result, proper geometric data are proved that lenth of the first forming area in the forward forming region is 1.5 times larger than circumference of work-piece and the progress angle changes 3 times smoothly.

  • PDF

반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구 (Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method)

  • 오세현;샤오샤오;김영석
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

레이디얼-전방압출 공정의 성형특성에 관한 연구 (A Study on the Forming Characteristics of Radial-Forward Extrusion Process)

  • 황승규;이호용;황병복
    • 소성∙가공
    • /
    • 제11권1호
    • /
    • pp.84-89
    • /
    • 2002
  • This study is concerned with the analysis of the forming characteristics of radial-forward extrusion. Angle between radial and forward extrusion, gap height, and friction factor are considered as important design factors to affect forming characteristics in radial-forward extrusion. The rigid-plastic finite element method is adopted to analyze the effects of design factors on forming loads. The incremental rates of loads are nearly constant except the deformation zone from radial to forward extrusion. The smaller angle induces lesser force increment, therefore forming load increases as the angle increases. Maximum load also increases as gap-height decreases and friction factor increases.

롤 포밍 공정에서 컷팅 펀치 형상에 관한 연구 (A study on the cutting punch shape about roll forming process)

  • 정문수
    • Design & Manufacturing
    • /
    • 제10권3호
    • /
    • pp.34-38
    • /
    • 2016
  • Roll forming is a continuous production process that is mass-produced. The roll forming process is produced in various forms. The special feature of roll forming is a continuous production. Therefore, the process of cutting the material is essential. The troubles in a shearing process affects the low productivity. Accordingly, it is important to reduce the factors that inhibit the material flow. And it is difficult to apply the common shear angle. Because it is not a simple forms, such as a progressive die. This study shows how to select the angle of a shear punch and the shape of a cutting punch in the product with a specific shape. Conclusively through three different model, it is advantageous to apply the different shear angle and clearance along the forms.