• Title/Summary/Keyword: forming analysis

Search Result 2,975, Processing Time 0.031 seconds

Forming load and stress analysis according to cold forming process of microalloyed forging steel (비조질강의 냉간 성형공정에 따른 성형하중 및 금형응력 해석)

  • Lee S.H.;Kim J.H.;Park N.K.;Lee Y.S.;Suh D.W.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.405-408
    • /
    • 2004
  • The forming load and the stress applied to dies during cold forming of automotive part using microalloyed forging steel are examined with finite element analysis. The forming load and the stress applied to dies at each process step are investigated for two types of forming process. The changes in forming process significantly affect the variation of firming load and the stress at each process step, thus it is considered that the die lift will be remarkably changed with the type of forming process, therefore optimal process design is necessary to obtain an increased the die life and to make the die life uniform at each process step.

  • PDF

Development on Steel Pipe for Hydroforming by Roll Forming Analysis (롤 성형 해석을 통한 하이드로포밍 전용 강관 개발)

  • 이봉열;조종래;문영훈;송병호;박중호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.229-232
    • /
    • 2003
  • In the roll forming process, a sheet or strip of metal is continuously and progressively formed into a desired cross-sectional profile by feeding it through a series of forming roll. Accordingly, it is important to maintain the material properties of the initial sheet and deform uniformly during the roll forming. The roll forming process was estimated in consideration of some factors such as material properties, strip thickness, roll diameter, roll velocity, and the deformation of the material that influence the forming length. The hydroforming technology has been recognized as a new technique in manufacturing industry, especially in automotive industry. The formed pipe in used in hydroforming process is manufactured by the roll forming. The formability during hydroforming is very sensitive to the state of pipes which are made by roll forming. Particularly the amount of hardening during roll forming affects the formability. Therefore, it is necessary to design the optimum roll flower to reduce the local hardening. In this paper, optimum roll flower which has uniform strain distribution through sheet width was obtained by comparing strain distribution in various roll flower. Finite element analysis(FEA) is performed to estimate the strain distribution related to hardening by roll forming. A numerical analysis is carried out by SHAPE-RF.

  • PDF

Forming Analysis of Automotive Fender Panel Considering Die Deformation (금형 변형을 고려한 자동차 펜더패널의 성형해석)

  • Song, M.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.387-394
    • /
    • 2006
  • In order to see the effect of die deformation on the forming analysis of sheet metals, the draw-ins, strains, and spring-backs of an automotive fender panels are numerically simulated by considering the die deformation found by the simultaneous structural analysis of press and dies. By coupling the forming analysis and the structural analysis, the die deformation is simultaneously taken into account in the forming process. Furthermore, for the consideration of load difference transferred among the upper die, punch, and blank holder due to the changes in sheet thickness, the gap elements are employed instead of the blank sheet in the structural analysis. The numerical simulation results of an automotive finder draw panel are compared with the measurements. The comparison of the forming and spring-back analysis results between the rigid die and the deformed die shows that the consideration of tool deformation can predict more accurately the forming and spring-back of sheet metals.

Elastic-Plastic Finite Element Analysis of the Roll Forming Process for an Automotive Part of High Strength Steel (고강도강 자동차 부품의 롤 성형 공정의 탄소성 유한요소해석)

  • Kim K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.480-483
    • /
    • 2005
  • A roll forming process is developed for an automotive part of high strength steel. Forming rolls are designed through the plane strain elastic-plastic finite element analysis to estimate the springback. It is assumed that the process can be approximated as a series of multi-step bending processes. Then the 3D elastic-plastic finite element analysis with the solid element is carried out for the designed roll forming process. The prototype roll forming machine and the forming rolls are made and the experiments are carried out. The results of the analysis and the experiments are compared.

  • PDF

Analysis of Cylindrical Tube Forming Process Using Polyurethane (고탄성체를 이용한 실린더 튜브의 축관 성형 연구)

  • La, W,K;Lee, H.W;Choi, S.;Lim, S.J;Woo, C.S.;Lee, G.A
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.354-359
    • /
    • 2006
  • The elastomer forming process was employed for many operations which included piercing, sheet metal forming and tube metal forming process. This paper presents cylindrical tube forming process using rubber material such as polyurethane. For elastomer forming process, tensile tests at room temperature were performed to obtain the material properties of polyurethane and tube. In particular, biaxial tensile test were carried out to obtain the coefficient of strain energy function of the rubber material. Finite element analyses were also carried out to investigate the forming load and formability of tube. It was compared with the experimental results about the forming load and the formability of tube. From these results, it was investigated a forming process to decrease the forming load for elastomer forming process.

Collapse Simulation with a Finite Element Limit Analysis for Thin-walled Structures Considering Forming Effects (성형효과를 고려한 박판 부재의 유한요소 극한해석을 이용한 붕괴거동해석)

  • Kim, Kee-Poong;Heh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.182-189
    • /
    • 2002
  • This paper is concerned with a collapse behavior analysis for a thin-walled structure considering farming effects. Numerical simulation is carried out with a finite element limit analysis in order to identify forming effects on collapse behavior of a thin-walled structure such as an S-rail. The formed S-rail contains fabrication histories such as residual stress, work hardening, non-uniform thickness distribution and geometric changes resulted from the forming process. The collapse behavior analysis of an S-rail with forming effects leads to different results from that without such effects. The present study deals with the collapse analysis of the S-rail fabricated with the typical forming, trimming and springback processes. Collapse properties such as the collapse load, the collapse mode and the energy absorption are calculated and investigated In order to identify forming effects. It is fully demonstrated that the design of thin-walled structures needs to consider the forming effects for a proper assessment of the load-carrying capacity and the deformation of the formed structures.

A Study on the Finite Element Analysis of Axisymmetric Hydrostatic Bulge forming Processes (축대칭 액압벌지 성형공정의 유한요소해석에 관한 연구)

  • Yun S. H.;Jin I. T.;Gu Y.;Ryoo I. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.115-119
    • /
    • 2001
  • This paper presents development of a Finite Element Analysis program. The program was developed on the based of second-dimensional plane strain rigid plasticity finite element analysis and an implicit program is coded. The program was tested by being applied to the axisymetric hydrostatic bulge forming processes using the circle dies. By the Finite Element Analysis at the fluid in chamber and at the blank material, we could know that the hydrostatic bulge forming processes can be influenced of material, the diameter of product and the forming velocity The developed Finite Element Analysis program was approved by the analysis results about forming variables.

  • PDF

Production of CO2 Laser Forming Machine for Bending of Sheet Metal Using the FE-Analysis (유한요소해석을 이용한 박판 벤딩용 CO2 레이저 성형기 제작)

  • Ko D.C.;Lee C.J.;Kim B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.319-325
    • /
    • 2006
  • The laser forming process is a new flexible forming process without forming tools and external force, which is applied to various fields of industry. Especially, applications of the laser forming process focused on cutting, welding and marking process. In this paper, the laser bending process of sheet metal which is heated by laser beam and formed by internal stress is simulated by using thermo elastic-plastic analysis model. Based on the result of FE-analysis, the laser bending machine is made to obtain reliable data for sheet bending. Under the same condition as FE-analysis, the laser bending experiment has been performed to ver 펴 the result of FE-analysis and good agreement has been obtained between FE-analysis and experiments. Additional laser bending experiments have been performed to evaluate the laser bending machine.

Multi-stage forming analysis of milli component for improvement of forming accuracy (밀리부품 성형 정밀도 향상을 위한 다단계 미세성형 해석)

  • Yoon, J.H.;Huh, H.;Kim, S.S.;Choi, T.H.;Na, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.97-100
    • /
    • 2003
  • Globally, the various machine components, as in electronics and communications, are demanded to being high-performance and micro-scale with abrupt development of the fields of computers, mobile communications. As this current tendency, production of the parts that must have high accuracy, so called milli-structure, are accomplished by the method of top-down, differently as in the techniques of MEMS, NANO. But, in the case of milli-structure, production procedure is highly costs, difficult and demands more accurate dimension than the conservative forming, processing technique. In this paper, forming analysis of the micro-former as the milli-structure are performed and then calculate the punch force etc. This information calculated is applied to decide the forming capacity of micro-former and design the process of forming stage, dimension of dies in another forming bodies. And, for the better precise forming analysis, elasto-plastic analysis is to be performed, then the consideration about effect of elastic recovery when punch and die are unloaded, have to be discussed in change of dimensions.

  • PDF

A Study on the 2-Layered Sheet Metal Forming Analysis and Applications in Automotive Exhaust Component (2-Layer 블랭크를 적용한 자동차 배기 부품의 박판 성형 해석 및 적용)

  • Roh G. T.;Jeong W. S.;Moon M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.318-321
    • /
    • 2005
  • The shell part is made of 2-layered blank because of functional requirements. To investigate the draw formability in this kind of part, the 2-layered sheet metal forming analysis process should be stipulated. First of all, treatment of contact with each blank must be considered to prevent the penetration on the each blank. Subsequently, applying the draw bead force is considered carefully because application of drawbead force for analysis is different with equivalent drawbead force. Formability as like crack, neck and wrinkles is estimated by FLD(Forming Limit Diagram) and thinning. A feasibility of the 2-layered sheet metal forming analysis process study is verified compare 2-layered sheet metal forming analysis with experimental results.

  • PDF