• 제목/요약/키워드: formation-stars

검색결과 288건 처리시간 0.02초

MECHANISM INDUCING GAS SUPPLY TO THE CENTRAL 10 PARSEC OF THE MILKY WAY

  • Morgan, Hannah L.;Kim, Sungsoo S.;Shin, Jihye;Chun, Kyungwon;Park, So-Myoung;Lee, Joowon;Minh, Young Chol
    • 천문학회지
    • /
    • 제53권6호
    • /
    • pp.117-123
    • /
    • 2020
  • We investigate the plausibility of mass return, from stellar mass loss processes within the central ~100 pc region of the Milky Way (the inner nuclear bulge), as a mass supply mechanism for the Circumnuclear Disk (CND). Gas in the Galactic disk migrates inward to the Galactic centre due to the asymmetric potential caused by the Galactic bar. The inward migration of gas stops and accumulates to form the central molecular zone (CMZ), at 100-200 pc from the Galactic center. It is commonly assumed that stars have formed in the CMZ throughout the lifetime of the Galaxy and have diffused inward to form a 'r-2 stellar cusp' within the inner nuclear bulge. We propose that the stars migrating inward from the CMZ supply gas to the inner nuclear bulge via stellar mass loss, resulting in the formation of a gas disk along the Galactic plane and subsequent inward migration down to the central 10 pc region (CND). We simulate the evolution of a gas distribution that initially follows the stellar distribution of the aforementioned stellar cusp, and illustrate the potential gas supply toward the CND.

[ N2H+ ] OBSERVATIONS OF MOLECULAR CLOUD CORES IN TAURUS

  • TATEMATSU KEN'ICHI
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.279-282
    • /
    • 2005
  • We report the millimeter-wave radio observations of molecular cloud cores in Taurus. The observed line is the $N_2H^+$ emission at 93 GHz, which is known to be less affected by molecular depletion. We have compared starless (IRAS-less) cores with star-forming cores. We found that there is no large difference between starless and star-forming cores, in core radius, linewidth, core mass, and radial intensity profile. Our result is in contrast with the result obtained by using a popular molecular line, in which starless cores are larger and less condensed. We suggest that different results mainly come from whether the employed molecular line is affected by depletion or not. We made a virial analysis, and found that both starless and star-forming cores are not far from the critical equilibrium state, in Taurus. Together with the fact that Taurus cores are almost thermally supported, we conclude that starless Taurus cores evolve to star formation without dissipating turbulence. The critical equilibrium state in the virial analysis corresponds to the critical Bonnor-Ebert sphere in the Bonnor-Ebert analysis (Nakano 1998). It is suggested that the initial condition of the molecular cloud cores/globules for star formation is close to the critical equilibrium state/critical Bonnor-Ebert sphere, in the low-mass star forming region.

Formation and evolution of mini halos around a dwarf galaxy sized halo - Candidate sites for the primordial globular clusters

  • Chun, Kyungwon;Shin, Jihye;Kim, Sungsoo S.
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.34.2-34.2
    • /
    • 2015
  • We aim to investigate the formation of primordial globular clusters (GCs) in the isolated dwarf galaxy (${\sim}10^{10}M_{sun}$) with cosmological zoom-in simulations. For this, we modified cosmological hydrodynamic code, GADGET-3, in a way to include the radiative heating/cooling that enables gas particles cool down to T~10K, reionization (z < 8.9) of the Universe, UV shielding ($n_{shield}$ > $0.014cm^{-3}$), and star formation. Our simulation starts in a cubic box of a side length 1Mpc/h with 17 million particles from z = 49. The mass of each dark matter (DM) and gas particle is $M_{DM}=4.1{\times}10^3M_{sun}$ and $M_{gas}=7.9{\times}10^2M_{sun}$, respectively, thus the GC candidates can be resolved with more than hundreds particles. We found the following results: 1) mini halos with the more interactions before merging into the main halo form the more stars and thus have the higher star mass fraction ($M_{star}/M_{total}$), 2) the mini halos with the high $M_{star}/M_{total}$ can survive longer and thus spiral into closer to the galactic center, 3) the majority of them spiral into bulge, but some of them can survive until the last as baryon-dominated system, like the GC.

  • PDF

Multiple Molecular Line Analysis in the Planck Cold Clumps with KVN Follow-up Observations.

  • Kang, Sung-ju;Liu, Tie;Kim, Kee-Tae;Choi, Minho;Kang, Miju;Lee, Jeong-Eun;Evans, Neal J.
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.32.2-32.2
    • /
    • 2017
  • Stars form in dense core within the molecular clouds. The prestellar cores provide information of the physical characteristics at the very early stages of star formation. The low dust temperature (<14K) of Planck cold clumps/cores (PGCCs) make them likely to be prestellar objects or at the very initial stage of protostellar collapse. We have been conducting the legacy surveys of Planck cold clumps with the JCMT, the TRAO 14-m and many other telescopes. We aim to study of the initial conditions of star formation and chemical evolutions of the cores in the different environments. From JCMT SCUBA-2 $850{\mu}m$ survey (SCOPE), we have already identified hundreds of dense cores, which may be at the earliest phase of star formation. Therefore in order to explore the chemical evolution of these dense cores, we used KVN telescopes in order to observe 75 well selected SCUBA-2 cores in many molecules as the follow-up project of KVN Pilot Observation of SCUBA-2. These observations will help advance our understanding of the propoerties of these SCUBA-2 cores in PGCCs.

  • PDF

Broadband Photometric Study of Two Open Clusters: Westerlund 1 and IC 1848

  • Lim, Beomdu
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.83.1-83.1
    • /
    • 2014
  • Open clusters consisting of a co-spatial and coeval population with a similar chemical composition are a superb astrophysical test bed in both stellar and galactic astronomy. We introduce not only several scientific issues relating to these objects but also comprehensive studies of the two young open clusters Westerlund 1 and IC 1848 formed in extremely different star-forming conditions. Westerlund 1 is known as the most massive starburst cluster in the Galaxy. Located in the Scutum-Centaurus spiral arm, the cluster is relatively close to the Galactic Center. The apparent surface density is very high. On the other hand, IC 1848 is a core cluster within the large-scale star-forming region W5 lying in the Perseus arm. Unlike Westerlund 1, IC 1848 with a putatively low metallicity exhibits a low surface density. We present the fundamental parameters of those young clusters, such as reddening, distance, and age, obtained from the broadband photometric analysis. The stellar initial mass function (IMF) of the clusters is used to investigate the effects of the different star-forming conditions on the star formation activity. With the results of previous studies for several young open clusters, our preliminary results support a possibility that star formation activity may be affected by the environmental factors or the initial condition of natal clouds. In addition, we shortly discuss the age scale and spread of pre-main sequence stars to understand the formation processes of star clusters.

  • PDF

Star Formation Activity in Infra-Red Dark Cloud at ${\Gamma}53.2^{\circ}$

  • 김현정;구본철
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • Infra-Red Dark Clouds (IRDCs) seen silhouette against the bright Galactic background in mid-IR are a class of interstellar clouds that are dense and cold with very high column densities. While IRDCs are believed to be the precursors to massive stars and star clusters, individual IRDCs show diverse star forming activities within them. We report a remarkable example of such cloud, the IRDC at ${\Gamma}53.2^{\circ}$, and star formation activity in this cloud. The IRDC was previously identified in part as three separate, arcmin-size clouds in the catalogue of MSX IRDC candidates, but we found that the IRDC is associated with a long, filamentary CO cloud at 2 kpc from the Galactic Ring Survey data of $^{13}CO$ J = 1-0 emission, and that its total extent reaches ~ 30pc. The Spitzer MIPSGAL 24mm data show a number of reddened mid-IR sources distributed along the IRDC which are probably young stellar objects (YSOs), and the UWISH2 $H_2$ data (2.122mm) reveal ubiquitous out flows around them. These observations indicate that the IRDC is a site of active star formation with YSOs in various evolutionary stages. In order to investigate the nature of mid-IR sources, we have performed photometry of MIPSGAL data, and we present a catalogue of YSOs combining other available point source catalogues from optical to IR. We discuss the evolutionary stages and characteristics of YSOs from their IR colors and spectral energy distributions.

  • PDF

Dense Core Formation in Filamentary Clouds: Accretion toward Dense Cores from Filamentary Clouds and Gravitational Infall in the Cores

  • Kim, Shinyoung;Lee, Chang Won;Myers, Philip C.;Caselli, Paola;Kim, Mi-Ryang;Chung, Eun Jung
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.70.3-70.3
    • /
    • 2019
  • Understanding how the filamentary structure affects the formation of the prestellar cores and stars is a key issue to challenge. We use the Heterodyne Array Receiver Program (HARP) of the James Clerk Maxwell Telescope (JCMT) to obtain molecular line mapping data for two prestellar cores in different environment, L1544 in filamentary cloud and L694-2 in a small cloud isolated. Observing lines are $^{13}CO$ and $C^{18}O$ (3-2) line to find possible flow motions along the filament, $^{12}CO$ (3-2) to search for any radial accretion (or infalling motions) toward the cores of gas material from their surrounding regions, and $HCO^+$ (4-3) lines to find at which density and which region in the core gases start to be in gravitational collapse. In the 1st moment maps of $^{13}CO$ and $C^{18}O$, velocity gradient patterns implying the flow of material were found at the cores and its surrounding filamentary clouds. The infall asymmetry patterns of HCO+ and $^{13}CO$ line profiles were detected to be good enough to analyze the infalling motions toward the cores. We will report further analysis results on core formation in the filamentary cloud at this meeting.

  • PDF

Constraining the ICL formation mechanism using fossil clusters at z~0.47

  • Yoo, Jaewon;Ko, Jongwan;Kim, Jae-Woo
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.33.3-34
    • /
    • 2018
  • Galaxy clusters contain a diffuse component of stars outside galaxies, that is observed as intracluster light (ICL). Since the ICL abundance increases during various dynamical exchanges of galaxies, the amount of ICL can act as a measurement tool for the dynamical stage of galaxy clusters. There are two prominent ICL formation scenarios; one is related to the brightest cluster galaxy (BCG) major mergers, and the other to the tidal stripping of galaxies. However, it is still under debate as to which is the main ICL formation mechanism. In this study we improve on earlier observational constraints of the ICL origin, by investigating it in a massive fossil cluster at z~0.47. Fossil clusters are believed to be dynamically matured galaxy clusters which have dominant BCGs. Recent simulation studies imply that, BCGs have assembled 85~90% of their mass by z~0.4 (e.g., Contini et al. 2014). Thus our target is an optimal test bed to examine the BCG-related scenario. Our deep images and Multi-Object Spectroscopic observations of the target fossil cluster (Gemini North 2018A) allow us to extract the ICL distribution, ICL color map and ICL fraction to cluster light. We will present a possible constraint of the ICL origin and discuss its connection to the BCG and the host galaxy cluster.

  • PDF

Internal structure and kinematics of the massive star forming region W4

  • Lim, Beomdu;Yun, Hyeong-Sik;Rauw, Gregor;Naze, Yael;Kim, Jinyoung S.;Lee, Jeong-Eun;Hwang, Narae;Park, Byeong-Gon;Park, Sunkyung;Sung, Hwankyung;Kim, Seulgi
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.72.3-72.3
    • /
    • 2019
  • OB associations are young stellar systems on a few tens to a hundred parsec scale, and many of them are composed of multiple substructures. It is suggested that some hints about their formation process are probably imprinted on structural features and internal kinematics. In this context, we study the massive star forming region W4 in the Cassiopeia OB6 association using the Gaia proper motion data and high-resolution optical spectra taken from Hectochelle on MMT. We probe the structure and internal kinematics of W4 to trance its formation process. Several nonmembers with different kinematic properties are excluded in our sample. Some of them may be young stellar population spread over a large area of the Perseus spiral arm given their wide spatial distribution over 50 parsecs. W4 is composed of an central open cluster (IC 1805) and an extended stellar component. Their global expansion patterns are detected in stellar proper motion. In this presentation, we will further discuss the formation process of W4, based on the velocity dispersions of stars comprising these substructure.

  • PDF

The Molecular Gas Kinematics of HI Monsters

  • Kim, Dawoon E.;Chung, Aeree;Yun, Min S.;Iono, Daisuke
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.33.2-33.2
    • /
    • 2020
  • Our HI monster sample is a set of local HI-rich galaxies identified by the ALFALFA survey (Arecibo Legacy Fast Survey ALFA) at z<0.08. Intriguingly, they are also found with a relatively large molecular gas reservoir compared to the galaxies with similar stellar mass and color, yet their star formation rate is quite comparable to normal spirals. This makes our HI monsters good candidates of galaxies in the process of gas accretion which may lead to the stellar mass growth. One feasible explanation for their relatively low star formation activity for a given high cool gas fraction is the gas in monsters being too turbulent to form stars as normal spirals. In order to verify this hypothesis, we probe the molecular gas kinematics of 10 HI monsters which we observed using the Atacama Large Millimeter/sub-millimeter Array (ALMA). We utilize the tilted ring model to investigate what fraction of the molecular gas in the sample is regularly and smoothly rotating. In addition, we model the molecular gas disk using the GALMOD package of the Groningen Image Processing System (GIPSY) and compare with the observations to identify the gas which is offset from the 'co-planar differential rotation'. Based on the results, we discuss the possibility of gas accretion in the sample, and the potential origin of non-regularly rotating gas and the inefficient star formation.

  • PDF