• Title/Summary/Keyword: formation-stars

Search Result 288, Processing Time 0.02 seconds

PHYSICAL PROPERTIES OF THE GIANT H II REGION G353.2+0.9 IN NGC 6357

  • BOHIGAS JOAQUIN;TAPIA MAURICIO;ROTH MIGUEL;RUlZ MARIA TERESA
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.281-284
    • /
    • 2004
  • Optical imaging and spectroscopy of G353.2+0.9, the brightest part of the giant H II region NGC 6357, shows that this H II region is optically thin, contains ${\~}300\;M_{\bigodot}$ of ionized gas and is probably expanding into the surrounding medium. Its chemical composition is similar to that found in other H II regions at similar galactocentric distances if temperature fluctuations are significant. The inner regions are probably made of thin shells and filaments, whereas extended slabs of material, maybe shells seen edge-on, are found in the periphery. The radio continuum and H$\alpha$ emission maps are very similar, indicating that most of the optical nebula is not embedded in the denser regions traced by molecular gas and the presence of IR sources. About $10^{50}$ UV photons per second are required to produce the H$\beta$ flux from the 1l.3'${\times}$10' region surrounding the Pis 24 cluster that is south of G353.2+0.9. Most of the energy powering this region is produced by the 03-7 stars in Pis 24. Most of the 2MASS sources in the field with large infrared excesses are within G353.2+0.9, indicating that the most recent star forming process occured within it. The formation of Pis 24 preceded and caused the formation of this new generation of stars and may be responsible for the present-day morphology of the entire NGC 6357 region.

OPTICAL-NEAR INFRARED COLOR GRADIENTS OF ELLIPTICAL GALAXIES AND THEIR ENVIRONMENTAL DEPENDENCE

  • KO JONGWAN;IM MYUNGSHIN
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.149-151
    • /
    • 2005
  • We have studied the environmental effect on optical-NIR color gradients of 273 nearby elliptical galaxies. Color gradient is a good tool to study the evolutionary history of elliptical galaxies, since the steepness of the color gradient reflects merging history of early types. When an elliptical galaxy goes through many merging events, the color gradient can be get less steep or reversed due to mixing of stars. One simple way to measure color gradient is to compare half-light radii in different bands. We have compared the optical and near infrared half-light radii of 273 early-type galaxies from Pahre (1999). Not surprisingly, we find that $r_e(V)s$ (half-light radii measured in V-band) are in general larger than $r_e(K)s$ (half-light radii measured in K-band). However, when divided into different environments, we find that elliptical galaxies in the denser environment have gentler color gradients than those in the less dense environment. Our finding suggests that elliptical galaxies in the dense environment have undergone many merging events and the mixing of stars through the merging have created the gentle color gradients.

THERMAL MODELS AND FAR INFRARED EMISSION OF ASTEROIDS

  • KIM SAM;LEE HYUNG MOK;NAKAGAWA TAKAO;HASEGAWA SUNAO
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.21-31
    • /
    • 2003
  • ASTRO-F /FIS will carry out all sky survey in the wavelength from 50 to 200 ${\mu}m$. At far infrared, stars and galaxies may not be good calibration sources because the IR fluxes could be sensitive to the dust shell of stars and star formation activities of galaxies. On the other hand, asteroids could be good calibration sources at far infrared because of rather simple spectral energy distribution. Recent progresses in thermal models for asteroids enable us to calculate the far infrared flux fairly accurately. We have derived the Bond albedos and diameters for 559 asteroids based on the IRAS and ground based optical data. Using these thermal parameters and standard thermal model, we have calculated the spectral energy distributions of asteroids from 10 to 200 ${\mu}m$. We have found that more than $70\%$ of our sample asteroids have flux errors less than $10\%$ within the context of the best fitting thermal models. In order to assess flux uncertainties due to model parameters, we have computed SEDs by varing external parameters such as emissivity, beaming parameter and phase integral. We have found that about 100 asteroids can be modeled to be better than $5.8\%$ of flux uncertainties. The systematic effects due to uncertainties in phase integral are not so important.

HIGH RESOLUTION OPTICAL SPECTRA OF HBC 722 AFTER OUTBURST

  • Lee, Jeong-Eun;Kang, Won-seok;Lee, Sang-Gak;Sung, Hyun-Il;Lee, Byeong-Cheol;Sung, Hwan-kyung;Green, Joel D.;Jeon, Young-Beom
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • We report the results of our high resolution optical spectroscopic monitoring campaign (${\lambda}$ = 3800 ~ 8800 ${\AA}$, R = 30000 - 45000) of the new FU Orionis-type object HBC 722. We observed HBC 722 with the BOES 1.8-m telescope between November 26 and December 29, 2010, and FU Orionis itself on January 26, 2011. We detect a number of previously unreported high-resolution K I and Ca II lines beyond 7500 ${\AA}$. We resolve the H${\alpha}$ and Ca II line profiles into three velocity components, which we attribute to both disk and outflow. The increased accretion during outburst can heat the disk to produce the relatively narrow absorption feature and launch outflows appearing as high velocity blue and red-shifted broad features.

HST archival survey of intracluster globular clusters in Virgo cluster

  • Lim, Sung-Soon;Park, Hong-Soo;Hwang, Ho-Seong;Lee, Myung-Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2012
  • Recently it is found that the globular clusters are not only bound in their host galaxies, but also are wandering between galaxies in Virgo and Coma clusters. The cluster-wide distribution of these intracluster globular clusters (IGCs) suggests that IGCs are an important probe to understand hierarchical structure formation. We present a survey of IGCs in Virgo cluster using HST archive images for four HST/ACS fields located from about 9 arcmin to 40 acrmin from the cluster center. We find ten new IGCs and confirm four previously known IGCs. The number density of IGCs decreases as the distance from the cluster center increases. We derive integrated photometry of IGCs. We also obtain photometry of resolved stars in the outer region of each cluster. These IGCs are fainter than $M_V{\approx}-9.5$ and mostly blue in (V-I) color. showing that they are mostly metal poor. The locations of red giant branch stars of IGCs in color-magnitude diagrams also show that they are meal-poor. We discuss the implications of these results.

  • PDF

Submillimeter Observations of the Infrared Dark Cloud G049.40-00.01

  • Kang, Mi-Ju;Choi, Min-Ho;Bieging, John H.;Rho, Jeong-Hee;Lee, Jeong-Eun;Tsai, Chao-Wei
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.77.2-77.2
    • /
    • 2012
  • Infrared dark clouds(IRDCs) are believed to be the progenitors of massive stars and clusters. We obtained 350 and 850 ${\mu}m$ continuum maps of the IRDC G049.40-00.01 using SHARC-II on CSO. Twenty-one dense clumps were identified within G049.40-00.01 based on the 350 ${\mu}m$ continuum map with an angular resolution of about 9.6". We present submillimeter continuum maps and report physical properties of the clumps. The masses of clumps are from 50 to 600 solar mass. About 70% of the clumps are associated with bright 24 ${\mu}m$ emission sources indicating protostars. The most massive two clumps show enhanced, extended 4.5 ${\mu}m$ emission representing on-going star forming activity. The size-mass distribution of the clumps suggests that many of them are forming high-mass stars. G049.40-00.01 contains numerous objects in various evolutionary stages of star formation, from pre-stellar clumps to H II regions.

  • PDF

THE FORMATION OF THE DOUBLE GAUSSIAN LINE PROFILES OF THE SYMBIOTIC STAR AG PEGASI

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • We analyze high dispersion emission lines of the symbiotic nova AG Pegasi, observed in 1998, 2001, and 2002. The Hα and Hβ lines show three components, two narrow and one underlying broad line components, but most other lines, such as HI, HeI, and HeII lines, show two blue- and red-shifted components only. A recent study by Lee & Hyung (2018) suggested that the double Gaussian lines emitted from a bipolar conical shell are likely to form Raman scattering lines observed in 1998. In this study, we show that the bipolar cone with an opening angle of 74°, which expands at a velocity of 70 km s-1 along the polar axis of the white dwarf, can accommodate the observed double line profiles in 1998, 2001, and 2002. We conclude that the emission zone of the bipolar conical shell, which formed along the bipolar axis of the white dwarf due to the collimation by the accretion disk, is responsible for the double Gaussian profiles.

Evidence of Stellar Substructures on the Near-infrared Image of M31 System

  • Kang, Minhee;Chun, Sang-Hyun;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2014
  • Hierarchical merging scenario indicates that galaxies go through major and minor merger events during their formation and evolution. As a result of the merging, substructural features of remnants such as stellar stream are shown around a current galaxy system. To find evidence of stellar substructures on M31 system, we used the near-infrared images of JHK filters obtained from the Wide Field Camera (WFCAM) at UKIRT 3.8m. A total sky coverage is an area of about$ 4.5^{\circ}{\times}6^{\circ}$ around M31. Indeed, M31 system which consists of several satellite systems contains stellar substructures such as giant stellar stream, loops, and spurs. By analysing stellar populations on the near-infrared color-magnitude diagrams, we selected member star candidates of each stellar substructure, from which we map out spatial distribution of stars in the vicinity of M31 system. Here, we present spatial density distribution maps of stars on each substructure over the entire field of M31 system. Also, we discuss the possible origin of the substructures and the implications on the galaxy assembly process.

  • PDF

Metal-Poor F-G-K type Local Subdwarfs From SDSS + GAIA GR2: Spectrophotometric & Kinematic Properties

  • Yang, Soung-Chul;Kim, Young Kwang;Lee, Young Sun;Lee, Hogyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.59.2-59.2
    • /
    • 2018
  • We introduce a new project of constructing a large spectro-photometric samples of metal-poor (i.e. [Fe/H] < -1.0) subdwarfs in the Galactic halo. The sample is collected from a compilation of the stellar objects that are cross-identified both in the Sloan Digital Sky Survey (SDSS) and recently published data from GAIA mission. The color range of the selected stars covers 0.0 < (g-r) < 2.0; thus the spectral types of our sample span from early F- through late K-type stars on the metal-poor main sequence (i.e. the local subdwarf sequence). We scrutinized the physical, chemical, and kinematical properties of our samples using their SDSS medium-resolution (R ~ 2000) spectra, combined with accurately measured proper motions from GAIA satellite. Our study will provide useful information on the global trend in the various properties (e.g. abundance pattern as a function of the galactocentric distance; rotational velocity vs [Fe/H] ${\cdots}$ etc) of the metal-poor subdwarf populations in the Galactic halo, which is ultimately important to better understand metal-poor stellar evolutionary models and chemical evolution of the Milky Way halo in the early phase of its formation. Further our comprehensive catalog of the Galactic field halo subdwarfs collected in this study will serve a solid groundwork for future follow-up high resolution spectroscopic observations on many interesting individual targets.

  • PDF

STARS: A 3D GRID-BASED MONTE CARLO CODE FOR RADIATIVE TRANSFER THROUGH RAMAN AND RAYLEIGH SCATTERING WITH ATOMIC HYDROGEN

  • Chang, Seok-Jun;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.169-179
    • /
    • 2020
  • Emission features formed through Raman scattering with atomic hydrogen provide unique and crucial information to probe the distribution and kinematics of a thick neutral region illuminated by a strong far-ultraviolet radiation source. We introduce a new 3-dimensional Monte-Carlo code in order to describe the radiative transfer of line photons that are subject to Raman and Rayleigh scattering with atomic hydrogen. In our Sejong Radiative Transfer through Raman and Rayleigh Scattering (STaRS) code, the position, direction, wavelength, and polarization of each photon is traced until escape. The thick neutral scattering region is divided into multiple cells with each cell being characterized by its velocity and density, which ensures flexibility of the code in analyzing Raman-scattered features formed in a neutral region with complicated kinematics and density distribution. To test the code, we revisit the formation of Balmer wings through Raman scattering of the far-UV continuum near Lyβ and Lyγ in a static neutral region. An additional check is made to investigate Raman scattering of O vi in an expanding neutral medium. We find a good agreement of our results with previous works, demonstrating the capability of dealing with radiative transfer modeling that can be applied to spectropolarimetric imaging observations of various objects including symbiotic stars, young planetary nebulae, and active galactic nuclei.