• Title/Summary/Keyword: formation-ISM

Search Result 100, Processing Time 0.022 seconds

THE EVOLUTIONARY STAGE OF H II REGION AND SPECTRAL TYPES OF MASSIVE STARS FROM KINEMATICS OF H2O MASERS IN W51 MAIN

  • Cho, Jae-Sang;Kan-Ya, Yukitoshi;Byun, Yong-Ik;Kurayama, Tomoharu;Choi, Yoon-Kyung;Kim, Mi-Kyoung
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.41-54
    • /
    • 2010
  • We report relative proper motion measurements of $H_{2}O$ masers in massive star-forming region W51 Main, based on data sets of VLBI observations for $H_{2}O$ masers at 22 GHz with Japanese VERA telescopes from 2003 to 2006. Data reductions and single-beam imaging analysis are to measure internal kinematics of maser spots and eventually to estimate the three-dimensional kinematics of $H_{2}O$ masers in W51 Main. Average space motions and proper motion measurements of $H_{2}O$ masers are given both graphical and in table formats. We find in this study that W51 Main appears to be associated with hyper-compact H II region with multiple massive proto-stars whose spectral types are of late O.

ICE ABSORPTION FEATURES IN NIR SPECTRA OF GALACTIC OBJECTS

  • Mori, Tamami I.;Onaka, Takashi;Sakon, Itsuki;Ohsawa, Ryou;Kaneda, Hidehiro;Yamagishi, Mitsuyoshi;Okada, Yoko;Tanaka, Masahiro;Shimonishi, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.105-107
    • /
    • 2017
  • We present results of AKARI/IRC near-infrared (NIR) slit-spectroscopy ($2.5-5.0{\mu}m$, R ~ 100) of Galactic sources, focusing on ice absorption features. We investigate the abundance of $H_2O$ and $CO_2$ ices and other ice species (CO and XCN ices) along lines of sight towards Galactic H $\small{II}$ regions, massive YSOs, and infrared diffuse sources. Even among those different kinds of astronomical objects, the abundance ratio of $CO_2$ to $H_2O$ ices does not vary significantly, suggesting that the pathway to $CO_2$ ice formation driven by UV irradiation is not effective at least among the present targets.

THE FORMATION OF THE DOUBLE GAUSSIAN LINE PROFILES OF THE SYMBIOTIC STAR AG PEGASI

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • We analyze high dispersion emission lines of the symbiotic nova AG Pegasi, observed in 1998, 2001, and 2002. The Hα and Hβ lines show three components, two narrow and one underlying broad line components, but most other lines, such as HI, HeI, and HeII lines, show two blue- and red-shifted components only. A recent study by Lee & Hyung (2018) suggested that the double Gaussian lines emitted from a bipolar conical shell are likely to form Raman scattering lines observed in 1998. In this study, we show that the bipolar cone with an opening angle of 74°, which expands at a velocity of 70 km s-1 along the polar axis of the white dwarf, can accommodate the observed double line profiles in 1998, 2001, and 2002. We conclude that the emission zone of the bipolar conical shell, which formed along the bipolar axis of the white dwarf due to the collimation by the accretion disk, is responsible for the double Gaussian profiles.

WATER MASERS FROM THE PROTOSTELLAR DISK AND OUTFLOW IN THE NGC 1333 IRAS 4 REGION

  • Park, Geum-Sook;Choi, Min-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.123-125
    • /
    • 2007
  • NGC 1333 is a nearby star forming region, and IRAS 4A and IRAS 4BI are low-mass Class 0 protostars. IRAS 4A is a protobinary system. The NGC 1333 IRAS 4 region was observed in the 22 GHz water maser with a high resolution (0.08") using the Very Large Array. Two groups of masers were detected: one near A2 and the other near BI. Most of the masers associated with A2 are located very close (< 100 AU) to the radio continuum source. They may be associated with the circumstellar disk. Since no maser was detected near AI, the A2 disk is relatively more active than the Al disk. Most of the masers in the BI region are distributed along a straight line, and they are probably related with the outflow. As in many other water maser sources, the IRAS 4 water masers seem to trace selectively either the disk or the outflow. Considering the outflow lifetimes, the disk-outflow dichotomy is probably unrelated with the evolutionary stage of protostars. A possible explanation may be that both the outflow-maser and the disk-maser are rare phenomena and that detecting both kinds of maser around a single protostar may be even rarer.

MOLECULAR CLOUD ASSOCIATED WITH AFGL 2591

  • Minh, Y.C.;Yang, Ji
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.5
    • /
    • pp.139-145
    • /
    • 2008
  • The molecular cloud, embedding AFGL 2591, has a "head-and-tail" structure with a total mass of ${\sim}\;1800\;M_{\odot}$, about half of the mass (${\sim}\;900\;M_{\odot}$) in the head (size ${\sim}\;1.2\;pc$ in diameter), and another half in the envelope (${\sim}\;3.5\;pc$ in the east-west direction). We found a new cloud in the direction toward north-east from AFGL 2591 (projected distance ${\sim}\;2.4\;pc$), which is probably associated with the AFGL 2591 cloud. The $^{12}CO$ spectrum clearly shows a blue-shifted high-velocity wing at around the velocity $-20\;{\sim}\;-10\;km\;s^{-1}$, but it is not clear whether this high-velocity component has a bipolar nature in our observations. The observed CN spectra also show blue-shifted wing component but the existence of the red-shifted component is not clear, either. In some CN and HCN spectra, the highvelocity components appear as a different velocity component, not a broad line-wing component. The dense cores, traced by CN and HCN, exist in the 'head' of the AFGL 2591 cloud with an elongated morphology roughly in the north-south direction with a size of about 0.5 pc. The abundance ratio between CN and HCN is found to be about 2 - 3 within the observed region, which may suggest a possibility that this core is being affected by the embedded YSOs or by possible shocks from outside.

INWARD MOTIONS IN STARLESS CORES TRACED WITH CS (3-2) and (2-1) LINES

  • LEE CHANG WON;MYERS PHILIP C.;PLUME RENE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.257-259
    • /
    • 2004
  • We compare the results of the surveys of starless cores performed with CS (2-1) and (3-2) lines to study inward motions in the cores. The velocity shifts of the CS(3-2) and (2-1) lines with respect to $N_2H^+$ are found to correlate well with each other and to have similar number distributions, implying that, in many cores, systematic inward motions of gaseous material may occur over a range of density of at least a factor ${\~}$4. Fits of the CS spectra to a 2-layer radiative transfer model in ten infall candidates suggest that the median effective line-of-sight speed of the inward-moving gas is ${\~}0.07 km\;s^{-l}$ for CS (3-2) and ${\~} 0.04 km\;s^{-l}$ for CS(2-1). Considering that the optical depth obtained from the fits is usually smaller in CS(3-2) than in (2-1) line, this may indicate that CS(3-2) usually traces inner, denser gas with greater inward motions than CS(2-1) implying that many of the infall candidates have faster infall toward the center. However, this conclusion may not be representative of all starless core infall candidates, due to the statistically small number analyzed here. Further line observations will be useful to test this conclusion.

QUANTIFYING DARK GAS

  • LI, DI;XU, DUO;HEILES, CARL;PAN, ZHICHEN;TANG, NINGYU
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.75-78
    • /
    • 2015
  • A growing body of evidence has been supporting the existence of so-called "dark molecular gas" (DMG), which is invisible in the most common tracer of molecular gas, i.e., CO rotational emission. DMG is believed to be the main gas component of the intermediate extinction region from Av~0.05-2, roughly corresponding to the self-shielding threshold of $H_2$ and $^{13}CO$. To quantify DMG relative to $H{\small{I}}$ and CO, we are pursuing three observational techniques; $H{\small{I}}$ self-absorption, OH absorption, and THz $C^+$ emission. In this paper, we focus on preliminary results from a CO and OH absorption survey of DMG candidates. Our analysis shows that the OH excitation temperature is close to that of the Galactic continuum background and that OH is a good DMG tracer co-existing with molecular hydrogen in regions without CO. Through systematic "absorption mapping" by the Square Kilometer Array (SKA) and ALMA, we will have unprecedented, comprehensive knowledge of the ISM components including DMG in terms of their temperature and density, which will impact our understanding of galaxy evolution and star formation profoundly.

The ISM properties under ICM pressure in the cluster environment : NGC4330, NGC4402, NGC4522, NGC4569

  • Lee, Bumhyun;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.85.2-85.2
    • /
    • 2012
  • The interstellar medium (ISM) of galaxies in the galaxy cluster can well be affected by the intracluster medium (ICM). Among many suggested environmental processes, ram pressure stripping can effectively remove gas through the interaction with the ICM. In fact, Cluster galaxies are lower in HI gas mass compared to their field counterparts, and in recent high resolution HI imaging studies, many galaxies in dense environments have been found to be ram pressure stripped in HI. However, it is still under debate whether the ICM pressure can also remove dense molecular gas from the galactic disk, which plays more important role in star formation and hence galaxy evolution. To answer this question, we have obtained high resolution 12/13 CO (2-1) data from the Sub Millimeter Array (SMA) of four galaxies at various HI stripping stages to study how the molecular gas properties change as the galaxy experiences the ICM pressure. We investigate the physical properties of molecular gas with 12/13 CO images. By comparing with other wavelength data, i.e. data(optical, HI, $H{\alpha}$, etc), we discuss how and in which timescale galaxies can migrate from the blue cloud to the red sequence due to ram pressure stripping.

  • PDF

PHYSICAL PROPERTIES OF THE GIANT H II REGION G353.2+0.9 IN NGC 6357

  • BOHIGAS JOAQUIN;TAPIA MAURICIO;ROTH MIGUEL;RUlZ MARIA TERESA
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.281-284
    • /
    • 2004
  • Optical imaging and spectroscopy of G353.2+0.9, the brightest part of the giant H II region NGC 6357, shows that this H II region is optically thin, contains ${\~}300\;M_{\bigodot}$ of ionized gas and is probably expanding into the surrounding medium. Its chemical composition is similar to that found in other H II regions at similar galactocentric distances if temperature fluctuations are significant. The inner regions are probably made of thin shells and filaments, whereas extended slabs of material, maybe shells seen edge-on, are found in the periphery. The radio continuum and H$\alpha$ emission maps are very similar, indicating that most of the optical nebula is not embedded in the denser regions traced by molecular gas and the presence of IR sources. About $10^{50}$ UV photons per second are required to produce the H$\beta$ flux from the 1l.3'${\times}$10' region surrounding the Pis 24 cluster that is south of G353.2+0.9. Most of the energy powering this region is produced by the 03-7 stars in Pis 24. Most of the 2MASS sources in the field with large infrared excesses are within G353.2+0.9, indicating that the most recent star forming process occured within it. The formation of Pis 24 preceded and caused the formation of this new generation of stars and may be responsible for the present-day morphology of the entire NGC 6357 region.

A NEAR-INFRARED STUDY OF THE HIGHLY-OBSCURED ACTIVE STAR-FORMING REGION W51B

  • Kim, Hyo-Sun;Nakajima, Yasushi;Sung, Hwan-Kyung;Moon, Dae-Sik;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.17-28
    • /
    • 2007
  • We present wide-field $JHK_s$-band photometric observations of the three compact H II regions G48.9-0.3, G49.0-0.3, and G49.2-0.3 in the active star-forming region W51B. The star clusters inside the three compact H II regions show the excess number of stars in the $J-K_s$ histograms compared with reference fields. While the mean color excess ratio $(E_{J-H}/E_{H-K_s})$ of the three compact H II regions are similar to ${\sim}2.07$, the visual extinctions toward them are somewhat different: ${\sim}17$ mag for G48.9-0.3 and G49.0-0.3; ${\sim}23$ mag for G49.2-0.3. Based on their sizes and brightnesses, we suggest that the age of each compact H II region is ${\leq}2\;Myr$. The inferred total stellar mass, ${\sim}1.4{\times}10^4M_{\odot}$, of W51B makes it one of the most active star forming regions in the Galaxy with the star formation efficiency of ${\sim}10%$.