• Title/Summary/Keyword: formation dynamics

Search Result 466, Processing Time 0.028 seconds

Photo-induced inter-protein interaction changes in the time domain; a blue light sensor protein PixD

  • Terazima, Masahide
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • For understanding molecular mechanisms of photochemical reactions, in particular reactions of proteins with biological functions, it is important to elucidate both the initial reactions from the photoexcited states and the series of subsequent chemical reactions, e.g., conformation, intermolecular interactions (hydrogen bonding, hydrophobic interactions), and inter-protein interactions (oligomer formation, dissociation reactions). Although time-resolved detection of such dynamics is essential, these dynamics have been very difficult to track by traditional spectroscopic techniques. Here, relatively new approaches for probing the dynamics of protein photochemical reactions using time-resolved transient grating (TG) are reviewed. By using this method, a variety of spectrally silent dynamics can be detected and such data provide a valuable description about the reaction scheme. Herein, a blue light sensor protein TePixD is the exemplar. The initial photochemistry for TePixD occurs around the chromophore and is detected readily by light absorption, but subsequent reactions are spectrally silent. The TG experiments revealed conformational changes and changes in inter-protein interactions, which are essential for TePixD function. The TG experiments also showed the importance of fluctuations of the intermediates as the driving force of the reaction. This technique is complementary to optical absorption detection methods. The TG signal contains a variety of unique information, which is difficult to obtain by other methods. The advantages and methods for signal analyses are described in detail in this review.

PATTERN FORMATION FOR A RATIO-DEPENDENT PREDATOR-PREY MODEL WITH CROSS DIFFUSION

  • Sambath, M.;Balachandran, K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.249-256
    • /
    • 2012
  • In this work, we analyze the spatial patterns of a predator-prey system with cross diffusion. First we get the critical lines of Hopf and Turing bifurcations in a spatial domain by using mathematical theory. More specifically, the exact Turing region is given in a two parameter space. Our results reveal that cross diffusion can induce stationary patterns which may be useful in understanding the dynamics of the real ecosystems better.

Heat resistance of carbon nanoonions by molecular dynamics simulation

  • Wang, Xianqiao;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.247-255
    • /
    • 2011
  • Understanding the structural stability of carbon nanostructure under heat treatment is critical for tailoring the thermal properties of carbon-based material at small length scales. We investigate the heat resistance of the single carbon nanoball ($C_{60}$) and carbon nanoonions ($C_{20}@C_{80}$, $C_{20}@C_{80}@C_{180}$, $C_{20}@C_{80}@C_{180}C_{320}$) by performing molecular dynamics simulations. An empirical many-body potential function, Tersoff potential, for carbon is employed to calculate the interaction force among carbon atoms. Simulation results shows that carbon nanoonions are less resistive against heat treatment than single carbon nanoballs. Single carbon nanoballs such $C_{60}$ can resist heat treatment up to 5600 K, however, carbon nanoonions break down after 5100 K. This intriguing result offers insights into understanding the thermal-mechanical coupling phenomena of nanodevices and the complex process of fullerenes' formation.

A Study on the Microcutting for Configuration of Tools using Molecular Dynamics (분자동력학을 이용한 공구형상에 따른 미소절삭현상에 관한 연구)

  • 뮨찬홍;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.83-88
    • /
    • 1993
  • Recently, the analysis of microcutting with submicrometer depth of cut is tried to get a more high quality surface product, but to get a valuable result another method instead of conventional finite element method must be considered because finite elment method is impossible for a very small focused region and mesh size. As the altermative method, Molecular Dynamics or Statics is suggested and acceoted in the field of microcutting, indentation and crack propagation. In this paper using Molecuar Dynamics simulation, the phenomena of microcutting with subnanometer chip thickness is studied and the cutting mechanism for tool edge configuration is evaluated. As the result of simulation the atomistic chip formation is achieved.

  • PDF

Discharge Dynamics of AC Plasma Display Panel

  • Whang, Ki-Woong;Seo, Jeong-Hyun;Yoon, Cha-Keun;Chung, Woo-Joon;Kim, Joong-Kyun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.53-57
    • /
    • 1999
  • To investigate the discharge dynamics of alternating current plasma display panel (ACPDP), we measured the spatio-temporally resolved VUV and IR emission by an intensified charge coupled device (CCD). The breakdown beings around the anode inner edge and moves towards the cathode surface. As the ionization intensifies in front of the cathode surface, another emission region appears on the anode surface. While the anode side emission does not move but grows, the cathode side emission moves out and spreads over the entire cathode surface. The discharge dynamics emission by a 2 dimensional numerical simulation suggests that a cathode-directed streamer formation play an important role.

  • PDF

Chaotic Phenomena in Addiction Model for Digital Leisure

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • Chaotic dynamics have been studied by many researchers in the fields of biology, physics, and engineering. Interest in chaos is also expanding to the social sciences such as politics, economics, and others, including the prediction of societal events. The concept of leisure has developed from a passive concept correlated with relaxation, entertainment, and ideology formation into a positive concept that assumes a more active role. As information and communications technology develops, digital leisure activity is expected to continue spreading. This expansion of digital leisure function correctly, as well as. Traditional leisure activity functions correctly more, whereas digital leisure activity is predicted to function incorrectly more often. In this paper, we propose a mathematical addiction model of digital leisure that deals with its dysfunctions such as addiction to digital leisure, including computer games, internet search, internet chatting, and social media. Herein, to solve addiction to digital leisure, we propose a model derived from a nicotine addiction.

Field-domain dynamics and current self-oscillations in negative-effective-mass terahertz oscillators

  • Cao, J.C.;Qi, M.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.36-39
    • /
    • 2003
  • Field-domain dynamics and current self-oscillations are theoretically studied in quantum-well (QW) negative-effective-mass (NEM) $p^{+}pp^{+}$ diodes when the electric field is applied along the direction of the well. The origin of current self-oscillations is the formation and traveling of electric-field domains in the p-base. We have accurately considered the scattering contributions from carrier-impurity, carrier-acoustic phonon, and carrier-optic phonon. It's indicated that, both the applied bias and the doping concentration largely influence the current patterns and self-oscillating frequencies, which lie in the THz range for the NEM $p^{+}pp^{+}$ diode with a submicrometer p-base. The complicated field-domain dynamics is presented with the applied bias as the controlling parameter.

Free Volume Formation in Amorphous Alloys: a Molecular Dynamics Study (비정질 합금의 자유부피 생성기구: 분자동력학적 고찰)

  • Lee, Chang-Myeon;Park, Kyoung-Won;Lee, Byeong-Joo;Shim, Jae-Hyeok;Lee, Jae-Hoon;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.701-707
    • /
    • 2008
  • This study examined the creation mechanism of free volume during homogeneous deformation induced by the elastostatic compression at room temperature. Experiments demonstrated that amorphous alloys subjected to the elastostatic compression underwent structural disordering, during which densely packed polyhedra breakdown to form new, loosely packed ones, resulting in the creation of excess free volume. A combination of experiments and molecular dynamics simulations are used to explore fundamental issues on how free volume is created during elastostatic compression.

LQ Inverse Optimal Consensus Protocol for Continuous-Time Multi-Agent Systems and Its Application to Formation Control (연속시간 다개체 시스템에 대한 LQ-역최적 상태일치 프로토콜 및 군집제어 응용)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.526-532
    • /
    • 2014
  • In this paper, we present and analyze a LQ (Linear Quadratic) inverse optimal state-consensus protocol for continuous-time multi-agent systems with undirected graph topology. By Lyapunov analysis of the state-consensus error dynamics, we show the sufficient conditions on the algebraic connectivity of the graph to guarantee LQ inverse optimality and closed-loop stability. A more relaxed stability condition is also provided in terms of the algebraic connectivity. Finally, a formation control protocol for multiple mobile robots is proposed based on the target LQ inverse optimal consensus protocol, and the simulation results are provided to verify the performance of the proposed LQ inverse formation control method.

Formation Control Algorithm for Coupled Unicycle-Type Mobile Robots Through Switching Interconnection Topology (스위칭 연결 구조를 갖는 외발형 이동 로봇들에 대한 대형 제어 알고리듬)

  • Kim, Hong-Keun;Shim, Hyung-Bo;Back, Ju-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.439-444
    • /
    • 2012
  • In this study, we address the formation control problem of coupled unicycle-type mobile robots, each of which can interact with its neighboring robots by communicating their position outputs. Each communication link between two mobile robots is assumed to be established according to the given time-varying interconnection topology that switches within a finite set of connected fixed undirected networks and has a non-vanishing dwell time. Under this setup, we propose a distributed formation control algorithm by using the dynamics extension and feedback linearization methods, and by employing a consensus algorithm for linear multi-agent systems which provides arbitrary fast convergence rate to the agreement of the multi-agent system. Finally, the proposed result is demonstrated through a computer simulation.