• 제목/요약/키워드: formability analysis

검색결과 267건 처리시간 0.037초

이단성형속도에 따른 AZ31판재 온간 성형성 변화 (Warm Formability Variation of AZ31 Sheet by Double Stage Forming Velocity)

  • 김흥규;김종덕;허영무
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.112-115
    • /
    • 2009
  • Press forming of magnesium alloy sheet is conducted at elevated temperatures to improve the press formability due to its low formability at room temperature. At elevated temperatures, magnesium alloy sheet formability is known to be very sensitive to the strain rate. In this paper, warm deep drawing tests of magnesium alloy AZ31 sheet was conducted under double forming velocity as well as single forming velocity to examine the formability change by forming velocity profile. The observed formability improvement by double forming velocity was analyzed by using the finite element analysis.

소재접합 일체성형 판재의 플래시 용접성과 성형성에 관한 연구 (Study on Flash Weldability and Formability in Steel Sheets by Tailor Welded Blank)

  • 최문일;민경복;강성수
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.400-406
    • /
    • 1998
  • The press formability analysis of welding parts was studied in the current work by the tailor welded blank. The press formability was tested by means of the flash weldability and the formability for two kinds of materials (SPCC & S35C). The results indicate that SPCC & S35C steel sheets showed good weldability and formability after an optimum welding conditions. The independent operation variables were characterized by strength of welding parts, deformation after the welding, press formability of welding parts and productibility of welding. The weldability and the quality of welding parts of the flashed SPCC steel sheet was superior to those of the S35C steel sheet, since a higher carbon content in steel sheet led to a higher hardness. The experimental results were discussed by the evaluation of the results obtained from tensile test, hardness test, micro-structure and V bending test.

  • PDF

AUTOMOTIVE FORMABILITY SIMULATION PROCESS FOR EARLY DESIGN PHASES

  • EL-SAYED J.;KIM H.;FRUTIGER R.;LIU W.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.277-283
    • /
    • 2005
  • Formability simulation of automotive panels at early design phases can reduce product and tooling development time and cost. However, for the simulation to be effective in leading the design process, fast and reliable results should be achieved with limited design definition and minimum modeling effort. In this paper, nonlinear finite element analysis is used to develop an automated process for the formability simulation of automotive body panels at early design phases. Due to the limited design definition at early design phases, the automated simulation process is based on the plane strain analysis for selected number of typical sections along the panel. Therefore, an entire panel can be analyzed with few sections. The state of plane strain can be easily induced, during simulation through symmetry and applied boundary conditions that simplify the modeling process. To study the reliability and effectiveness of the developed simulation process, the analytical results are compared with measured results of production automotive body side panels. The comparison demonstrates that the developed simulation process is reliable and can be effective for analyzing sheet metal formability, in early vehicle development phases.

유한요소해석을 이용한 Mg 합금 판재 성형 공정 변수 분석 (FEM analysis for process variables in sheet metal forming for Mg alloy)

  • 이영선;권용남;이정환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1082-1086
    • /
    • 2004
  • Since the sheet forming of Mg alloy has many difficulties due to the low formability, many forming conditions need to be selected properly. Especially, the process variables should be investigated to increase the formability, such as, forming temperature. In this paper, the effects of forming process variables has been investigated using the bending and deep drawing process. A simple U-bending designed for mobile part could be formed in room temperature and springback amounts are surveyed. On the other hand, square cup part couldn't be formed in room temperature due to the low formability. Therefore, the effects of forming temperature are investigated in deep drawing process for square cup part. As a experimental and FEM results, the optimum forming temperature is presence and formability in a higher temperature is less than that of lower temperature. Above experimental results are compared with the FEM analysis and well coincided with the experimental results. Therefore, more detail investigations could be progressed to select more appropriate process conditions by the FEA.

  • PDF

AZ31B 합금판재 성형관련 기초물성 실험 및 해석 연구 (Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet)

  • 김세호;박기동;장정호;김경태;이형욱;이근안;김기풍;이용신
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.466-472
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

AZ31B 합금판재 성형관련 기초물성 시험 및 해석 연구 (Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet)

  • 김세호;박기동;장정호;김경태;이형욱;이근안;최석우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.366-369
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

  • PDF

Clad Sheet(Mg-Al-SUS) 성형성에 관한 해석 기법의 연구 (A Study of the FEM Method on the Clad Sheet Metal Formability)

  • 정택우;이영선;김대용;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.399-402
    • /
    • 2009
  • The Clad sheet is made roll-bonding process of the one or more material with the different property. Good formability is an essential property in order to deform a clad metal sheet to a part or component. In this study, the mechanical properties and formability of a Mg-Al-SUS clad sheet are investigated. The clad sheet was deformed at elevated temperatures because of its poor formability at room temperature. Tensile tests of the each material and clad sheet were performed at various temperatures and at various strain rates. The limited draw ration (LDR) was obtained using a deep drawing test to measure the formability of the clad sheet. A finite element (FE) analysis was performed to predict formability of the cup drawing product, one_layer model and three_layer model.

  • PDF

유한요소해석에 의한 자동차용 관재액압성형 부품의 성형성 평가 (Evaluation of Formability on Hydroformed Part for Automobile Based on Finite Element Analysis)

  • 송우진;허성찬;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.52-58
    • /
    • 2008
  • Tube hydroforming process is generally consisted with pre-bending, preforming and hydroforming processes. Among forming defects which may occur in tube hydroforming such as buckling, wrinkling and bursting, the wrinkling and bursting by local instability under excessive tensile stress mode were mainly caused by thinning phenomenon in the manufacturing process. Thus the accurate prediction and suitable evaluation of the thinning phenomenon play an important role in designing and producing the successfully hydroformed parts without any failures. In this work, the formability on hydroformed part for automobile, i.e. engine cradle, was evaluated using finite element analysis. The initial tube radius, loading path with axial feeding force and internal pressure, and preformed configuration after preforming process were considered as the dominant process parameters in total tube hydroforming process. The effects on these process parameters could be confirmed through the numerical experiments with respect to several kinds of finite element simulation conditions. The degree of enhancement on formability with each process parameters such as initial tube radius, loading path and preform configuration were also compared. Therefore, it is noted that the evaluation approach of the formability on hydroformed parts for lots of industrial fields proposed in this study will provide one of feasible methods to satisfy the increasing practical demands for the improvement of the formability in tube hydroforming processes.

포물선형상의 성형성에 관한 유한요소해석 (Finite Element Analysis on Formability of Parabolic Shape)

  • 정상원;이경원
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.677-682
    • /
    • 2012
  • For the product with small diameter, long column, and parabolic shape, the forging formability of the high-carbon steel wire rod was investigated in this study. By using the three-dimensional finite element method, the formability of wire was reviewed by forming analysis for the desired parabolic shape of local part. Analysis results due to forging direction, forging velocity, friction coefficient and constraint location were also investigated. On the basis of these results, it is noted that the forging direction has the big influence when the product with long column is forged. As the forging velocity increases, buckling tends to be limited and formability of parabolic shape is improved. By constraining the lower parabolic shape part to suppress plastic strain, the effect depending on friction coefficient is not almost appeared. And good parabolic shape is obtained at the region of the forging velocity of more than 0.5 m/s.

결함을 가지는 모델을 이용한 허브 홀 확장에서의 파단 예측 (Prediction of fracture in hub-hole expansion with a defected-edge model)

  • 이종섭;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2004
  • The hub hole is usually formed with a stretch flanging process followed by a blanking process of a hole. Since the hole is made by blanking, the blanked surface is so rough that the formability in the region is rather poor. The emerging task is to identify the formability of the blanked region in the forming simulation and to relate the criterion to the real forming process by experiments. In this paper, the blanked region of a hole surface is modeled by a defected-edge finite element for stretch flanging simulation. The analysis deals with the level of defect in the blanked region in order to identify the formability in the real process. The analysis provides the formability depending on the level of defect and seeks the way to match the level of defect to that of the real surface. The approach makes the analysis possible to deal with the formability of the high strength steel and predict the fracture at the hole surface during the stretch flanging simulation.

  • PDF