• Title/Summary/Keyword: forest insects

Search Result 155, Processing Time 0.021 seconds

Manipulation of Summer Diapause by Chilling in Matsucoccus thunbergianae (Hemiptera: Coccoidea: Margarodidae) (저온처리에 의한 솔껍질깍지벌레 여름휴면의 조절)

  • Lee, Jong-Hee;Wi, An-Jin;Park, Seung-Chan
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.349-356
    • /
    • 2013
  • A set of experiments were conducted to determine the zero temperature and total effective temperature for the summer diapause and post-diapause development of Matsucoccus thunbergianae Miller et Park (Hemiptera: Margarodidae) which infests the Japanese black pine, Pinus thunbergii. The diapausing first instar nymphs were kept in cool storage during three separate times, each starting from May 4th, June 19th, and August 15th of 2002. Cool storage temperatures were 2.5, 5.0, 7.5, 10.0, 12.5 and $15.0^{\circ}C$. The nymphs were chilled for 10, 20, 30 or 40 days in the first two sets of experiments. In the third experiment, nymphs were chilled for 3, 6, 9 or 12 days. Molting into the second instar nymphs was examined every 10 days, starting at 20 days after taken out from the cool storage. Optimum temperature range of the diapause development was between 7.5 and $10^{\circ}C$, where diapause development was completed in 40, 20, and 6 days by the insects chilled from May 4th, June 19th and August 15th, respectively. Comparing the three sets of experiments with different chilling periods, zero temperature for diapause development was calculated as $29^{\circ}C$. Effective temperature for diapause development was 964 degree days, and it was estimated that nymphs completed their diapause development by September 8th in nature. Under natural temperature conditions >50% eclosion into the second instar occurred on November 9th. Zero temperature for post-diapause development was $10^{\circ}C$, and total effective temperature for post-diapause development until the molt into the second instar was 391 degree days.

Analysis of the Planting and Use of Landscaping Plants - Focused on Weonju and Hoengseong - (조경식물의 식재와 이용 - 원주시와 횡성군을 중심으로 -)

  • Won, Jong-Hwa;Jeong, Jin-Hyung;Kim, Chang-Seop;Lee, Ki-Eui
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.34-58
    • /
    • 2005
  • This study was executed to find out how to improve the planting and use of landscaping plants in Weonju and Hoengseong. 1. The number of street trees were 22,068 and the species number were 10 species in Weonju in 2004. The major species of street trees were Ginkgo biloba(58%), Prunus sargentii(15%), Zelkova serrata(9%), Prunus armeniaca var. ansu(8%), and Acer palmatum(6%). The ratio of native species versus exotic were 50:50. In Hoengseong, the number of street trees was 13,500 and the species number were 15 species. The major species of street trees were Prunus sargentii(42%), Ginkgo biloba(23%), Acer triflorum(12%), Prunus armeniaca var. ansu(6%), and Prunus mume(4%). The ratio of native species versus exotic were 67:33. The species of which planting frequency within two areas was very high were Ginkgo biloba and Prunus sargentii. 2. It is necessary to select tree species suitable for the characteristics of the locality and to raise distinctive street trees that contribute to the tourist industry. For the purpose, the appropriate street trees in two areas are Cornus controversa, Quercus aliena, Zelkova serrata, Prunus padus, Sorbus alnifolia, Sorbus comixta, Albizzia julibrissin, Acer triflorum, Styrax japonica, Chionanthus retusus, Celtis sinensis, Prunus yedoensis, Malus sieboldii, Crataegus Pinnatifida, Prunus armeniaca var. ansu and Pyrus pyrifolia etc.. 3. Appropriate pruning adds to the aesthetic and prolongs the useful life, it also requires less managing of insects and diseases to maintain good healthy of street trees. Street trees were not properly pruned due to electric lines and shortage of pruning information. The pruning was controlled by Korea Electric Power Co, which has no pruning information. Pruning must be maintained by a professional landscape company to maintain good shape such as with Bonsai. The shrubs planting zone between street trees and other trees, and preservation plates were established for healthy of street trees. They have to be repaired and maintained well to keep better environmental conditions. The proper fertilization, the control of pests and diseases, the installation of drainpipe and the use of soil brought from another place were needed to improve the planting, use and maintenance of landscape plants. 4. The species number of school trees and flowers of 102 schools in Weonju and Hoengseong were 17species, 16species respectively. The major species of school trees in Weonju were Juniperus chinensis(24%), Ginkgo biloba(17%), Pinus densiflora(14%), Zelkova serrata(14%), and Pinus koraiensis(9%), and those of school trees in Hoengseong were Pinus koraiensis(44%), Abies holophylla(25%), Juniperus chinensis(8%), and Ginkgo biloba(8%). The major species of school flowers in Weonju were Rosa centifolia(47%), Forsythia koreana(24%), Magnolia kobus(12%), and Rhododendron schlippenbachii(6%), and those of school flowers in Hoengseong were Forsythia koreana(36%), Rhododendron schlippenbachii(33%), Magnolia kobus(6%) and Dicentra spectabilis(6%). 5. The species number of the protection trees designated by Woenju and Hoengseong were 15 species. The major species of protection trees were Zelkova serrata(100 trees), Ginkgo biloba(18) Pinus densiflora(7), Quercus spp. (5), Juniperus chinensis(4) and Alnus japonica(4). 6. The landscape plants planted around 2004 in weonju were Prunus yedoensis(2,563 trees), Betula platyphylla var. japonica(2,000), Abies holophylla(1,785), Diospyros kaki(1,100), Prunus sargentii(880) and Prunus armeniaca var. ansu(708) etc.. The shrubs planted were Rhododendron obutusum(21,559 plants), Rosa centifolia (7,150), Rhododendron yedoense var. poukhanense(5,950), Forsythia koreana(3,000) and Ligustrum obtusi[olium(2,500) etc.. The landscape plants planted in Hoengseong Acer triflorum(928trees), Prunus yedoensis(455), Zelkova serrata(327), Thuja orientalis(261), Prunus sargentii(257), Pinus koraiensis(200), Prunus persica for. rubro-plena(200) and Pyrus pyrifolia (200) etc.. The shrubs planted were Rhododendron yedoense var. poukhanense(15,936), Syringa dilatata(10,090), Forsythia koreana(9,660), Cercis chinensis(3,200), Buxus microphylla var. koreana(2,600) and Rosa centifolia(1,868) etc.. 7. The species numbers of the herbaceous plants planted in 2004 in Weonju were 24 species and the ratio of native species versus exotic were 7:17. The major species of perennial plants were Aster koraiensis(30,656 plants), Coreopsis drummondii(7,656), Rudbeckia bicolor(6,000), Chrysanthemum morifolium(4,850) and Chrysanthemum zawadskii var. latilobum(4,312). The major species of annuals and biennials were Cosmos bipinnatus(672,000 plants), Zinnia elegans(35,600), Petunia hybrida(26,920), Viola tricolor(23,000), Helianthus annuus(17,000), and Geranium cinereum var. pubcaulescens(5,200). In Hoengseong, the numbers of herbaceous plants were 906,310 plants and the species numbers were 15 species. The major species of perennials plants were Aster koraiensis(70,480 plants), Hemerocallis fulva(20,070), and Phlox drummondii(18,000). The major species of annuals and biennials were Phlox hybrida(174,000 plants), Cosmos bipinnatus(125,000), Zinnia elegans(109,000), Tagetes patula(96,700), Vinca rosea(89,000) and Calendula officinalis(70,000). 8. Through these result, it was thought that the diversification of planting species, the selection of plants suitable to each space and the generalization of use of native species were needed.

  • PDF

Spatio-Temporal Changes of Beetles and Moths by Habitat Types in Agricultural Landscapes (농촌경관에서 서식지 유형에 따른 딱정벌레와 나방의 시공간적 변화 양상)

  • Kim, Nang-Hee;Choi, Sei-Woong;Lee, Jae-Seok;Lee, Jaeha;Ahn, Kee-Jeong
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.180-189
    • /
    • 2018
  • Agricultural landscapes in Korea comprise a large cultivation area of rice paddies, other crops, and forests which surround the cropland and the farmers' residential village. The forests in this agricultural landscape play important roles as ecological corridors and refuges for plants and animals in this agroecosystem. The present study investigated the spatial and temporal diversity patterns among these components of the agroecosystem to provide baseline data that describes how fauna change in the studies system. Insect sampling was conducted at four sites in two regions, Chungcheong (Ockcheon and Geumsan) and Jeonnam (Younggwang and Haenam), from March to August of 2014, using an UV light trap for moths and five pitfall traps for beetles. Beetles comprised 225 species and 2,457 individuals in 35 families, while moths consisted of 141 species and 403 individuals in 17 families. Beetles showed higher diversity in Chungcheong than Jeonnam, while moths showed no difference in diversity between regions. Forests showed the highest number of species and individuals, followed by orchards and rice paddies. The food preference of beetles showed that forests contained a higher proportion of herbivores, while orchards and rice paddies had a higher proportion of carnivores. Temporal changes in moths in the two regions were synchronous, while those of beetles were nonsynchronous. Moths increased from spring to summer across all habitats, especially in rice paddies during summer. Beetles also increased from spring to summer in orchards and rice paddies, although the beetles in the forests increased in the middle of summer. A detailed and long-term study is needed to reveal the causes of different diversity patterns of taxa among the different habitats within the agroecosystems.

Classification of Cordyceps spp. by Morphological Characteristics and Protein Banding Pattern (동충하초(冬蟲夏草)(Cordyceps) 속균의 형태적인 특징과 단백질 Pattern에 의한 계통 분류)

  • Sung, Jae-Mo;Lee, Hyun-Kyung;Yang, Keun-Joo
    • The Korean Journal of Mycology
    • /
    • v.23 no.1 s.72
    • /
    • pp.92-104
    • /
    • 1995
  • Ten species of Cordyceps species were collected throughout Kangwon province including Chuncheon Dongsanmyun KNU forest experiment from June to September, 1993. Collected Cordyceps species were identified as Cordyceps militaris, C. roseostromata, C. kyushuensis, C. scarabaeicola, Phytocordyceps ninchukiospora, C. nutans, Paecilomyces tenuipes, C. sphecocephala, Hymenostilbe odonatae, Torrubiella sp.. C. militaris, type species of Cordyceps species, was mainly formed on pupae of Lepidoptera and found after the rainy season around July. Fruiting body of C. roseostromata was morphologically similar to those of C. militaris, but relatively small in size and they were also found on lawn or pupa of Lepidoptera. Fruiting body of C. scarabaeicola was found on adult Scarabaeidae specifically and collect fruiting bodies of C. kyushuensis were on larva of moth. C. nutans and C. sphecocephala had host specificity on Hemiptera and Hymenoptera, respectively. Each species formed elliptical fertile part attach to the slim and carneous stalk and they were collected the most in specimen number through whole season of the summer. Ascospore of Phytocordyceps ninchukiospora on seed was characterized by two viable, multiseptate, fusiform units linked end-to-end by a long, filiform connective. Paecilomyces tenuipes, imperfect stage of the genus Cordyceps is multi-infective fungi that attack all stages of all groups of insects. Hymenostilbe odonatae attacks only adult Odonata and Torrubiella sp. formed on spider was difficult to collect because it was found the back side of leaf. As results of cultural test PDA medium showed the best mycelial growth. In the experiment of effect of the acidity inside of the media, C. militaris was good on pH 5, C. nutans and Phytocordyceps ninchukiospora were good on pH 6 and Paecilomyces tenuipes was on pH 7 and C. scarabaeicola was on pH 9. All isolates tested showed the best mycelial growth at $20^{\circ}C$. Morphologically similar isolates were used to analyze protein banding pattern among and within species. As a result, C. militaris, C. roseostromata and C. kyushuensis were clustered into close species and C. scarabaeicola and Phytocordyceps ninchukiospora were relatively distant from those species.

  • PDF

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera) (전국 야생 벌목 분포에 대한 기후요인 영향 연구)

  • Yu, Dong-Su;Kwon, Oh-Chang;Shin, Man-Seok;Kim, Jung-Kyu;Lee, Sang-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.303-317
    • /
    • 2022
  • Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy