• Title/Summary/Keyword: forest fires

Search Result 254, Processing Time 0.026 seconds

Regional Analysis of Forest Eire Occurrence Factors in Kangwon Province (강원도 지역 산불발생인자의 지역별 유형화)

  • 이시영;한상열;안상현;오정수;조명희;김명수
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2001
  • This study attempts to categorizes the factors of forest fire occurrences based on regional meteorologic data and general forest no characteristics of 18 cities and guns in Kangwon province. lo accomplish this goal, some statistical analyses such as analysis of variance, correspondence analysis and multidimensional scaling were adopted. To reveal the forest fires pattern of study region, a categorization process was conducted by employing the quantification approach which modified and quantified the metric-data of fire occurrence dates. Also, The fire occurrence similarity was compared by using multidimensional scaling for each study region. The major results are summarized as follows: It was found that the meteorological factors emerged as different to each region are average and maximum temperature, minimum dew point temperature and average and maximum wind speed. In the result of correspondence analysis representing relationships between fire causes and study regions, Kangrung is caused by arsonist, Chulwon, Hwachen and Yanggu caused by military factor, Sokcho and Chunchen caused by the debris burning, and Samchuk caused by general man-caused fires, respectively. Finally, the forest fire occurrence pattern of this study regions were divided into five areas such as, group I including Samchuk, Kangryung, Chunchen, Wonju, Hongchen and Hhoingsung, group II including Donghae, Taebaek, Yangyang and Pyongchang, group III including Jungsun, Chulwon and Whachen, group Ⅵ including Gosung, Injae and Yanggu, and group V including Shokcho and Youngwol.

  • PDF

Differences in Breeding Bird Communities by Post-fire Restoration Methods (산불 후 복원방법의 차이가 번식기 조류 군집에 미치는 영향)

  • Kim, Jin-Yong;Lee, Eun-Jae;Choi, Chang-Yong;Lee, Woo-Shin;Lim, Joo-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.4
    • /
    • pp.508-515
    • /
    • 2015
  • Post-fire restoration can affect breeding bird communities and species compositions over a long-term period by determining pot-fire succession, and a long-term monitoring is therefore required to understand its impacts on forest birds. This study aimed to document the effects of post-fire restoration methods on breeding bird communities in three areas: unburned and two burned (nonintervention and intervention with clear-cut logging and planting) stands 13 years after the stand-replacing Samcheok forest fire at Mt. Geombong in Samcheok, South Korea. According to 108 point counts during the breeding season from April to June 2013, we found that the number of individuals, observed bird species, and species diversity index in intervention stands with clear-cut logging and planting were lower than that in nonintervention and unburned control stands. Foraging and nesting guild analysis also showed a lower abundance of foliage searchers, timber drillers, primary cavity nesters and secondary cavity nesters in intervention stands than in the other stands, while no significant difference was detected between the nonintervention and unburned stands. These results imply that an interventional restoration method may deter the recovery of avian breeding communities after forest fires, and also suggest that non-interventional restoration methods may be an effective way to benefit the species diversity and density of breeding bird communities.

Predicting the Potential Distribution of Pinus densiflora and Analyzing the Relationship with Environmental Variable Using MaxEnt Model (MaxEnt 모형을 이용한 소나무 잠재분포 예측 및 환경변수와 관계 분석)

  • Cho, NangHyun;Kim, Eun-Sook;Lee, Bora;Lim, Jong-Hwan;Kang, Sinkyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.47-56
    • /
    • 2020
  • Decline of pine forests happens in Korea due to various disturbances such as insect pests, forest fires and extreme climate, which may further continue with ongoing climate change. For conserving and reestablishing pine forests, understanding climate-induced future shifts of pine tree distribution is a critical concern. This study predicts future geographical distribution of Pinus densiflora, using Maximum Entropy Model (MaxEnt). Input data of the model are locations of pine tree stands and their environmental variables such as climate were prepared for the model inputs. Alternative future projections for P. densiflora distribution were conducted with RCP 4.5 and RCP 8.5 climate change scenarios. As results, the future distribution of P. densiflora steadily decreased under both scenarios. In the case of RCP 8.5, the areal reductions amounted to 11.1% and 18.7% in 2050s and 2070s, respectively. In 2070s, P. densiflora mainly remained in Kangwon and Gyeongsang Provinces. Changes in temperature seasonality and warming winter temperature contributed primarily for the decline of P. densiflora., in which altitude also exerted a critical role in determining its future distribution geographic vulnerability. The results of this study highlighted the temporal and spatial contexts of P. densiflora decline in Korea that provides useful ecological information for developing sound management practices of pine forests.

Change Detection of Damaged Area and Burn Severity due to Heat Damage from Gangwon Large Fire Area in 2019 (2019년 강원도 대형산불지역의 열해 피해로 인한 피해강도 변화 탐색)

  • Won, Myoungsoo;Jang, Keunchang;Yoon, Sukhee;Lee, HoonTaek
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1083-1093
    • /
    • 2019
  • The purpose of this study is to detect the burned area change by direct burning of tree canopies and post-fire mortality of trees via analyzing satellite imageries from the Korea multi-purpose satellite-2 and -3 (KOMPSAT-2 and -3) for two large-fires over the Goseong-Sokcho and Gangneung-Donghae regions in April 2019. For each case, the burned area was compared between two dates: the day when the fire occurred and 15-18 days after it. As the results, within these two dates, there was no substantial difference in burned area of sites whose severities were marked as "Extreme", but sites with "High" and "Low" severities showed significant differences in burned area between the two dates. These differences were resulted from the lagged post-fire browning of canopies which was detected by images from in-situ observation,satellite, and the unmanned aerial vehicle. The post-fire browning started after 3-4 days and became apparent after 10-15 days. This study offers information about the timing to quantify the burned area by large fire and about the mechanism of post-fire mortality. Also, the findings can support policy makers in planning the restoration of the damaged areas.

Determination of Fire Severity and Deduction of Influence Factors Through Landsat-8 Satellite Image Analysis - A Case Study of Gangneung and Donghae Forest Fires - (Landsat-8 위성영상 분석을 통한 산불피해 심각도 판정 및 영향 인자 도출 - 강릉, 동해 산불을 사례로 -)

  • Soo-Dong Lee;Gyoung-Sik Park;Chung-Hyeon Oh;Bong-Gyo Cho;Byeong-Hyeok Yu
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.3
    • /
    • pp.277-292
    • /
    • 2024
  • In order to manage large-scale forest fires concentrated in Gangwon-do and Gyeongsangbuk-do with severe topographical heterogeneity, a decision-making process through efficient and rapid damage assessment using satellite images is essential. Accordingly, this study targets a large-scale forest fire that ignited in Gangneung and the Donghae, Gangwon-do on March 5, 2022, and was extinguished around 19:00 on March 8, to estimate the fire severity using dNBR and derive environmental factors that affect the grade. As environmental factors, we quantified the regular vegetation index representing vegetation or fuel type, the forest index that classifies tree species, the regular moisture index representing moisture content, and DEM in relation to topography, and then analyzed the correlation with the fire severity. In terms of fire severity, the widest range was 'Unbured' at 52.4%, followed by low severity at 42.9%, medium-low severity at 4.3%, and medium-high severity at 0.4%. Environmental factors showed a negative correlation with dNDVI and dNDWI, and a positive correlation with slope. Regarding vegetation, the differences between coniferous, broad-leaved, and other groups in dNDVI, dNIWI, and slope, which were analyzed to affect the fire severity, were analyzed to be significant with p-value < 2.2e-16. In particular, the difference between coniferous and broad-leaved forests was clear, and it was confirmed that coniferous forest suffered more damage than broad-leaved forest due to the higher fire severity in the Gangwon-do region, including Pinus densiflora, which are dominant species, as well as P. koraiensis, P. rigida and P. thunbergii.

Characteristics of Vegetation Structure of Burned Area in Mt. Geombong, Samcheok-si, Kangwon-do (강원도 삼척 검봉산 일대 산불 피해복원지 식생 구조 특성)

  • Sung, Jung Won;Shim, Yun Jin;Lee, Kyeong Cheol;Kweon, Hyeong keun;Kang, Won Seok;Chung, You Kyung;Lee, Chae Rim;Byun, Se Min
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.3
    • /
    • pp.15-24
    • /
    • 2022
  • In 2000, a total of 23,794ha of forest was lost due to the East Coast forest fire, and about 70% of the damaged area was concentrated in Samcheok. In 2001, artificial restoration and natural restoration were implemented in the damaged area. This study was conducted to understand the current vegetation structure 21 years after the restoration of forest fire damage in the Samcheok, Gumbong Mountain area. As a result of classifying the vegetation community, it was divided into three communities: Quercus variabilis-Pinus densiflora community, Pinus densiflora-Quercus mongolica community, and Pinus thunbergii community. Quercus variabilis, Pinus densiflora, and Pinus thunbergii planted in the artificial restoration site were found to continue to grow as dominant species in the local vegetation after restoration. As for the species diversity index of the community, the Quercus variabilis-Pinus densiflora community dominated by deciduous broad-leaf trees showed the highest, and the coniferous forest Pinus thunbergii community showed the lowest. Vegetation in areas affected by forest fires is greatly affected by reforestation tree species, and 21 years later, it has shown a tendency to recover to the forest type before forest fire. In order to establish DataBase for effective restoration and to prepare monitoring data, it is necessary to construct data through continuous vegetation survey on the areas affected by forest fires.

An Experimental Study on the Effect of Rotation Strength on Fire Whirl Characteristics (회전강도가 Fire Whirl의 특성에 미치는 영향에 관한 실험연구)

  • Choi Sang-Yeol;Ryou Hong-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.11-17
    • /
    • 2005
  • Rotational motion in the atmosphere around a fire may have a profound influence on the fire plume. This process underlies the occurrence of fire whirls. Fire whirls are rare but highly destructive phenomenon which were observed in a large forest, urban and building fires. The present study aims to investigate of the effect of rotation Strength on the fire whirl characteristics expeimentally. Experiments are performed for various sizes of fire source with different rotation strength. From the experimental observations, it is noted that the mean centerline temperature is gradually increased and mean radial temperature is decreased as increases rotation strength. The characteristic mean flame height of fire based on the visible observation is increased as increases of dimensionless swirl parameter, $\Omega/\alpha$, represented by swirl induced motion to buoyancy driven motion.

Disaster Emergency Management Systems using Bio-AdHoc Sensor Networks (센서 탑재 바이오 애드 혹 네트워크를 이용한 재난 관리용 시스템)

  • Lee, Dong-Eun;Lee, Goo-Yeon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.183-189
    • /
    • 2006
  • Ad hoc network does not need any preexisting network infrastructure, and it has been developed as temporal networks in the various fields. Infostation is an efficient system to transfer informations which are not sensitive to delay. In this paper, we propose a disaster emergency management system using sensors attached to animals, that is combined with infostation system. We also analyze the performance of the proposed system by simulation. From the performance analysis results, we expect that the proposed system will be very useful to early detect big forest fires which occur frequently in Korea mountain areas.

  • PDF

A Field Experiment Study of Broadleaf Liriope Planting Width Calculation for Forest Fires Spread Blocking (산불확산 저지를 위한 맥문동 식재폭 산정 야외실험)

  • Kwon, Chun-Geun;Lee, Si-Young;Lee, Si-Hyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.417-421
    • /
    • 2011
  • 본 연구에서는 우리나라 전역에 군락으로 서식하는 상록 다년초인 맥문동을 이용한 현장 실험을 실시하여 지표화 방지 및 확산속도 저지를 위한 산불 이격거리를 제시하고자 삼척시 검봉산 맥문동 식재지에서 식재지 미식재지 총 4종류의 실험구를 설정하고 실험한 결과 맥문동 식재지는 미식재지에 비해 1.1-2.9배 산불확산속도 저지 효과가 있는 것으로 나타났으며, 지표화 발생시 산림내로 확산되기 전 초동진화에 필요한 시간(30분)을 감안하면, 산림인접지 부근의 식재폭은 최소 69m 최대 203m가 필요한 것으로 나타났다.

  • PDF

Fire detection system and alarm system using wild boars (동물들을 이용한 재난 조기 경보 시스템의 설계 및 분석)

  • Jeong, Eui-Jong;Lee, Goo-Yeon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.719-720
    • /
    • 2006
  • Ad hoc networks does not need any wired network infrastructure. Therefore, they have been developed in temporary networks or mainly in military networks. Infostations offer geographically intermittent coverage at high speeds. Up-to-date there have been frequent big forest fires in Korea mountain areas. It is very important to detect them early to prevent them from being big disasters. In this paper, we propose a disaster emergency management system using sensor attached wild boars' mobility combined with infostation system. We also make a numerical analysis of the performance of the system.

  • PDF