This study confirmed the usefulness of short-wavelength infrared (SWIR) in the discrimination and classification of evergreen forest types. A forested area near Hisayama and Sasaguri in Fukuoka Prefecture, Japan, served as the study area. Warm-temperate forest vegetation dominates the study site vegetation. Coniferous plantation forest, natural broad-leaved forest, and bamboo forest were analyzed using LANDSAT5/TM and SPOT4/HRVIR remote sensing data. Samples were extracted for the three forest types, and reflectance factors were compared for each band. Kappa coefficients of various band combinations were also compared by classification accuracy. For the LANDSAT5/TM data observed in April, October, and November, Bands 5 and 7 showed significant differences between bamboo, broad-leaved, and coniferous forests. The same significant difference was not recognized in the visible or near-infrared regions. Classification accuracy, determined by supervised classification, indicated distinct improvements in band combinations with SWIR, as compared to those without SWIR. Similar results were found for both LANDSAT5/TM and SPOT4/HRVIR data. This study identified obvious advantages in using SWIR data in forest-type discrimination and classification.
This study proved if the high resolution satellite imagery of IKONOS is suitable for preparing digital forest cover map. Three methods, the pixel based classification with maximum likelihood (PML), the segment based classification with majority principle(SMP), and the segment based classification with maximum likelihood(SML), were applied to classify and delimitate forest cover of IKONOS imagery taken in May 2000 in a forested area in the central Korea. The segment-based classification was more suitable for classifying and deliminating forest cover in Korea using IKONOS imagery. The digital forest cover map in which each class is delimitated in the form of a polygon can be prepared on the basis of the segment-based classification.
Recent developments in sensor technologies have provided remotely sensed data with very high spatial resolution. In order to fully utilize the potential of high resolution images, new image classification strategies are necessary. Unfortunately, the high resolution images increase the spectral within-field variability, and the classification accuracy of traditional methods based on pixel-based classification algorithms such as Maximum-Likelihood method may be decreased (Schiewe 2001). Recent development in Object Oriented Classification based on image segmentation algorithms can be used for the classification of forest patches on rugged terrain of Korea. The objectives of this paper are as follows. First, to compare the pros and cons of image classification methods based on pixel-based and object oriented classification algorithm for the forest patch classification. Landsat ETM+ data and IKONOS data will be used for the classification. Second, to investigate ways to increase classification accuracy of forest patches. Supplemental data such as DTM and Forest Type Map of 1:25,000 scale are used for topographic correction and image segmentation. Third, to propose the best classification strategy for forest patch classification in terms of accuracy and data requirement. The research site for this paper is Namhansansung Provincial Park located at the eastern suburb of Seoul Metropolitan City for its diverse forest patch types and data availability. Both Landsat ETM+ and IKONOS data are used for the classification. Preliminary results can be summarized as follows. First, topographic correction of reflectance is essential for the classification of forest patches on rugged terrain. Second, object oriented classification of IKONOS data enables higher classification accuracy compared to Landsat ETM+ and pixel-based classification. Third, multi-stage segmentation is very useful to investigate landscape ecological aspect of forest communities of Korea.
Forest cover density studies using high resolution satellite data and object oriented classification are limited in India. This article focuses on the potential use of QuickBird satellite data and object oriented classification in forest density mapping. In this study, the high-resolution satellite data was classified based on NDVI/pixel based and object oriented classification methods and results were compared. The QuickBird satellite data was found to be suitable in forest density mapping. Object oriented classification was superior than the NDVI/pixel based classification. The Object oriented classification method classified all the density classes of forest (dense, open, degraded and bare soil) with higher producer and user accuracies and with more kappa statistics value compared to pixel based method. The overall classification accuracy and Kappa statistics values of the object oriented classification were 83.33% and 0.77 respectively, which were higher than the pixel based classification (68%, 0.56 respectively). According to the Z statistics, the results of these two classifications were significantly different at 95% confidence level.
Journal of the Korean Society of Environmental Restoration Technology
/
v.18
no.1
/
pp.127-133
/
2015
Interests in ecosystem services have increased and a number of attempts to perform a quantitative valuation on them have been undertaken. To classify the ecosystem types landcover classification maps are generally used. However, some forest types on landcover classification maps have a number of errors. The purpose of this study is to verify the forest types on the landcover map by using a variety of field survey data and to suggest an improved method for forest type classifications. Forest types are compared by overlaying the landcover classification map with the 4th forest type map, and then they are verified by using National Forest Inventory, 3rd National Ecosystem Survey and field survey data. Misclassifications of forest types are found on the forest on the forest type map and farm and other grassland on the landcover map. Some errors of forest types occur at Daegu, Busan and Ulsan metropolitan cities and Gangwon province. The results of accuracy in comprehensive classification show that deciduous forest is 76.1%; coniferous forest is 54.0%; and mixed forest is 22.2%. In order to increase the classification accuracy of forest types a number of remote sensing images during various time periods should be used and the survey period of NFI and the National Forest Inventory and National Ecosystem Survey should be consistent. Also, examining areas with wide forest patch should be prioritized during the field survey in order to decrease any errors.
Journal of the Korean Association of Geographic Information Studies
/
v.11
no.4
/
pp.10-21
/
2008
A forest functions classification map is an essential element for the management planning of national forests. This study was intended to make out the map at the stand level by utilizing the Forest Functions Evaluation Program(FFEP), developed by Korea Forest Research Institute. In this program, the potential of each function was evaluated in each grid cell, and then a forest functions estimation map was generated based on the optimum grid cell values in each sub-compartment unit. Finally, the program produced a forest functions classification map with consideration of the priority of the functions. The final forest functions classification map required for the national forest management planning made out overlapping those results which the rest of the forest classified referring priority functions classification map to national forest manager and classified according to the local administrative guidance and sustainable forest resources management guidance. The results indicated that the forest function classification using the FFEP program could be an efficient tool for providing the data required for national forest management planning. Also this study made a meaningful progress in the forest function classification by considering the local forest administrative guidance and sustainable forest resources management guidance.
Generally human sensibility is expressed in a certain language. To discover the sensibility of visitors in relation to the forest environment, it is first necessary to determine their exact meanings. Furthermore, it is necessary to sort these terms according to their meanings based on an appropriate classification system. This study attempted to develop a classification system for forest sensibility vocabulary by extracting Korean words used by forest visitors to express their sensibilities in relation to the forest environment, and established the structure of the system to classify the accumulated vocabulary. For this purpose, we extracted forest sensibility words based on literature review of experiences reported in the past as well as interviews of forest visitors, and categorized the words by meanings using the Standard Korean Language Dictionary maintained by the National Institute of the Korean Language. Next, the classification system for these words was established with reference to the classification system for vocabulary in the Korean language examined in previous studies of Korean language and literature. As a result, 137 forest sensibility words were collected using a documentary survey, and we categorized these words into four types: emotion, sense, evaluation, and existence. Categorizing the collected forest sensibility words based on this Korean language classification system resulted in the extraction of 40 representative sensibility words. This experiment enabled us to determine from where our sensibilities that find expressions in the forest are derived, that is, from sight, hearing, smell, taste, or touch, along with various other aspects of how our human sensibilities are expressed such as whether the subject of a word is person-centered or object-centered. We believe that the results of this study can serve as foundational data about forest sensibility.
Hyperion, as hyperspectral data, is carried on NASA’s EO-1 satellite, can be used in more subtle discrimination on forest cover, with 224 band in 360 ?2580 nm (10nm interval). In this study, Hyperion image is used to investigate the effects of topography on the classification of forest cover, and to assess whether the topographic correction improves the discrimination of species units for practical forest mapping. A publicly available Digital Elevation Model (DEM), at a scale of 1:25,000, is used to model the radiance variation on forest, considering MSR(Mean Spectral Ratio) on antithesis aspects. Hyperion, as hyperspectral data, is corrected on a pixel-by-pixel basis to normalize the scene to a uniform solar illumination and viewing geometry. As a result, the approach on topographic effect normalization in hyperspectral data can effectively reduce the variation in detected radiance due to changes in forest illumination, progress the classification of forest cover.
The EO-1 spacecraft, launched November 21, 2000 into a sun synchronous orbit behind Landsat 7, hosts advanced technology demonstration instruments, whose capabilities are currently being assessed by the user community for future missions. A significant part of the EO-1 program is to perform data comparisons between Hyperion, ALI and Landsat 7 ETM+. In this paper, a comparison of forest classification results from Hyperion, ALI, and the ETM+ of Landsat-7 are provided for Wangqing Forest Bureau, Jilin Province, Northeast China. The data have been radiometrically corrected and geometrically resampled. Feature selection and statistical transforms are used to reduce the Hyperion feature space from 86 channels to 14 features. Classes chosen for discrimination included Larch, Spruce, Oak, Birch, Popular and Mixed forest and other landuses. Classification accuracies have been obtained for each sensor. Comparison of the classification results shows : Hyperion classification results were the best, ALI's were much better than ETM+.
International journal of advanced smart convergence
/
v.10
no.1
/
pp.216-224
/
2021
Aim of this research was to classify forest types at Wando in Jeonnam Province and develop warm temperate forest management system with application of Remote Sensing and GIS. Another emphasis was given to the analysis of satellite images to compare forest type changes over 10 year periods from 2009 to 2019. We have accomplished this study by using ArcGIS Pro and ENVI. For this research, Landsat satellite images were obtained by means of terrestrial, airborne and satellite imagery. Based on the field survey data, all land uses and forest types were divided into 5 forest classes; Evergreen broad-leaved forest, Evergreen Coniferous forest, Deciduous broad-leaved forest, Mixed fores, and others. Supervised classification was carried out with a random forest classifier based on manually collected training polygons in ROI. Accuracy assessment of the different forest types and land-cover classifications was calculated based on the reference polygons. Comparison of forest changes over 10 year periods resulted in different vegetation biomass volumes, producing the loss of deciduous forests in 2019 probably due to the expansion of residential areas and rapid deforestation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.