• Title/Summary/Keyword: forest catchment

Search Result 97, Processing Time 0.023 seconds

Regional and Environmental Status of Upper Basin of Daechung Reservoir to Predict Nitrogen and Phosphorus Loads from Aerable Land and Forest Stand

  • Kim, Hye-Jin;Lim, You-Jin;Song, Jin-A;Park, Misuk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.690-697
    • /
    • 2012
  • Approximately 67% of the total land area of the Korea is covered by forest. Eutrophication, defined as the enrichment of waters beyond natural levels, principally by the nutrient phosphorus (P), is a serious cause of concern at the present time. The contribution of forestry to P loading in catchment waters has not been intensively studied in Korea, but is potentially important because forests are often located in near-pristine environments. Phosphorus is retained by most mineral soils and, as a consequence, losses are usually negligible. However, it is much more mobile in organic soils where it can be relatively easily leached or lost through surface runoff, as these soils have a low capacity to retain free phosphate. This report has been prepared to study the influence of arable land used for paddy, upland, and forestry on water quality in the basin of Daechung reservoir.

Evaluation of Forest Watershed Hydro-Ecology using Measured Data and RHESSys Model -For the Seolmacheon Catchment- (관측자료와 RHESSys 모형을 이용한 산림유역의 생태수문 적용성 평가 -설마천유역을 대상으로-)

  • Shin, Hyung Jin;Park, Min Ji;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1293-1307
    • /
    • 2012
  • This study is to evaluate the RHESSys (Regional Hydro-Ecological Simulation System) simulated streamflow (Q), evapotranspiration (ET), soil moisture (SM), gross primary productivity (GPP) and photosynthetic productivity (PSNnet) with the measured data. The RHESSys is a hydro-ecological model designed to simulate integrated water, carbon, and nutrient cycling and transport over spatially variable terrain. A 8.5 $km^2$ Seolma-cheon catchment located in the northwest of South Korea was adopted. The catchment covers 90.0% forest and the dominant soil is sandy loam. The model was calibrated with 2 years (2007-2008) daily Q at the watershed outlet and MODIS (Moderate Resolution Imaging Spectroradiometer) GPP, PSNnet and 3 year (2007~2009) daily ET data measured at flux tower using the eddy-covariance technique. The coefficient of determination ($R^2$) and the Nash-Sutcliffe model efficiency (ME) for Q were 0.74 and 0.63, and the average $R^2$ for ET and GPP were 0.54 and 0.93 respectively. The model was validated with 1 year (2009) Q and GPP. The $R^2$ and the ME for Q were 0.92 and 0.84, the $R^2$ for GPP were 0.93.

Variations of Annual Evapotranspiration nnd Discharge in Three Different Forest-Type Catchments, Gyeonggido, South Korea (임상이 다른 3개 산림소유역의 장기 증발산량과 유출량의 변화)

  • Kim Kyong-Ha;Jeong Yong-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.174-182
    • /
    • 2006
  • This study was to clarify the effects of forest stand changes on hydrological components of evapotranspiration and discharge. The forest-hydrological experimental stations in Gwangneung and Yangju, Gyeonggido near metropolitan Seoul have been operated by the Korea Forest Research Institute since 1979 to clarify the effects of forest types and practices on the water resources and nutrient cycling and soil loss. The hydrological regime of the forested catchments may change as forests develop. The ranges of change may be different depending on forest types. Evapotranspiration can be estimated to 679mm, 580mm and 368mm in planted young coniferous (PYC), natural old-growth deciduous (NOD) and rehabilitated young mixed (RYM), respectively. The slope of the discharge-duration curve shows the capacity of discharge control in a specific catchment. The slope tended to be steeper in RYM than NOD, the better forest condition. The slope in RYM became more gentle as the forest stand developed. Forests can modulate peak flows through interception, evapotranspiration and soil storage opportunity. PYC and RYM showed 100 and 50mm of threshold rainfall for modulating peak flows, respectively. The deciduous forest did not represent sudden changes of peak flow rates to rainfall, even 200 mm rainfall Forest development in PYC may play an important role in modulation of peak flows because peak flow rates reduced after 10 years.

Improving the Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: V. Field Validation of the Sky-condition based Lapse Rate Estimation Scheme (기상청 동네예보의 영농활용도 증진을 위한 방안: V. 하늘상태 기반 기온감률 추정기법의 실용성 평가)

  • Kim, Soo-ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2016
  • The aim of this study was to confirm the improvement of efficiency for temperature estimation at 0600 and 1500 LST by using a simple method for estimating temperature lapse rate modulated by the amount of clouds in comparison with the case adopting the existing single temperature lapse rate ($-6.5^{\circ}C/km$ or $-9^{\circ}C/km$). A catchment of the 'Hadong Watermark2,' which includes Hadong, Gurye, and Gwangyang was selected as the area for evaluating the practicality of the temperature lapse rate estimation method. The weather data of 0600 and 1500 LST at 12 weather observation sites within the catchment were collected during the entire year of 2015. Also, the 'sky condition' of digital forecast products of KMA in 2015 ($5{\times}5km$ lattice resolution) were overlapped with the catchment of the 'Hadong Watermark2,' to calculate the spatial average value within the catchment, which were used to simulate the 0600 and 1500 LST temperature lapse rate of the catchment. The estimation errors of the temperatures at 0600 LST were ME $-0.39^{\circ}C$ and RMSE $1.45^{\circ}C$ in 2015, when applying the existing temperature lapse rate. Using the estimated temperature lapse rate, they were improved to ME $-0.19^{\circ}C$ and RMSE $1.32^{\circ}C$. At 1500 LST, the effect of the improvements found from the comparison between the existing temperature lapse rate and the estimated temperature lapse rate were minute, because the estimated lapse rate of clear days is not very different from the existing lapse rate. However, the estimation errors of the temperatures at 1500 LST during cloudy days were improved from ME $-0.69^{\circ}C$, RMSE $1.54^{\circ}C$ to ME $-0.51^{\circ}C$, RMSE $1.19^{\circ}C$.

Planning for Amphibians Habitats in Urban Forest Wetlands, Korea (도시 산림습지 내 양서류 서식처 조성방안 연구)

  • Hur, Myung-Jin;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.1-19
    • /
    • 2017
  • This study set out to identify problems with amphibian habitation by the wetland types and improve their habitation environment in urban forest wetlands, thus creating a habitat for amphibians. Study site include forest swamps in Jatjul Park as well as Yeoji neighborhood Park in Guro-gu, and in Choansan neighborhood Park in Dobong-gu. The forest swamp in Jatjul Park gets its water from Mt. Maebong and it is a former escalated farmland-turned wetland. The swamp area is $2,500m^2$, a forest zone and a landscape planting site are 83.27% and 6.70% each. Target species Seoul pond frogs are inseparable from rice fields because they live in a short radius of and lay eggs in or near paddy fields, and Rana nigromaculata have similarities with Rana plancyi chosenica in choosing their habitats. There was need for paths that would lead to other paths so amphibians would spread to other parts of the forest and for measures to secure open water. Modifying a variety of routes for water, human and animals along with building a buffer to keep the core habitation zones were required. The forest swamp in Yeonji neighborhood Park used to be a water reservoir on the foot of Mt. Gunji. The swamp area is $1,980m^2$, a forest zone and farmland account for 80.61% and 4.88% each. Non-point pollutants from upstream along run into the subject forest marsh, bare ground on the around swamp and steep stone embankments obstructed amphibians. Target species was Bufo gargarizans that live in forests and edges of hills and spawn in deep water. The forest swamp in Choansan neighborhood Park gets its water from Mt. Choan and it is close to its water source that it is a mountain stream forest wetland. The basin and the swamp are $35,240m^2$ and $250m^2$ in size respectively. A forest zone accounts for 90.20%, high stone embankments laid in refurbishing the valley obstruct amphibians and there is water shortage in times of droughts. Target species were Rana coreana, Rana dybowskii and Hynobius leechii that live in mountain valleys, streams and wetlands and lay eggs in forest marshes and rocks in valleys. Looking into the three swamps of amphibian habitation, I came to conclusions that those wetlands were suitable for their amphibians but man-made facilities blocked their corridors leading to other corridors and even killed off target species in some parts of those swamps by destroying those parts. Amphibians live in water, on ground and underground at different stages of life. Hence, we should take this fact into consideration when planning their habitats and design core habitation zones, buffers zone and use zones accordingly. Buffer zones ought to be between core habitation zones and surrounding trees. Aiming at protecting core habitation zones, buffers should be in harmony with habitation zones. Use zones should be minimized in size and not in direct contact with core habitation zones.

Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model (SWAT 모형을 이용한 미래 기후변화가 설마천 혼효림 유역의 증발산과 토양수분에 미치는 영향 평가)

  • Ahn, So Ra;Park, Geun Ae;Jang, Cheol Hee;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.569-583
    • /
    • 2013
  • This study is to evaluate the future climate change impact on hydrological components in the Seolmacheon ($8.54km^2$) mixed forest catchment located in the northwest of South Korea using SWAT (Soil and Water Assessment Tool) model. To reduce the uncertainty, the model was spatially calibrated (2007~2008) and validated (2009~2010) using daily observed streamflow, evapotranspiration, and soil moisture data. Hydrological predicted values matched well with the observed values by showing coefficient of determination ($R^2$) from 0.74 to 0.91 for streamflow, from 0.56 to 0.71 for evapotranspiration, and from 0.45 to 0.71 for soil moisture. The HadGEM3-RA future weather data of Representative Concentration pathway (RCP) 4.5 and 8.5 scenarios of the IPCC (Intergovernmental Panel on Climate Change) AR5 (Assessment Report 5) were adopted for future assessment after bias correction of ground measured data. The future changes in annual temperature and precipitation showed an upward tendency from $0.9^{\circ}C$ to $4.2^{\circ}C$ and from 7.9% to 20.4% respectively. The future streamflow showed an increase from 0.6% to 15.7%, but runoff ratio showed a decrease from 3.8% to 5.4%. The future predicted evapotranspiration about precipitation increased from 4.1% to 6.8%, and the future soil moisture decreased from 4.3% to 5.5%.

A Study on the Development of Topographical Variables and Algorithm for Mountain Classification (산지 경계 추출을 위한 지형학적 변수 선정과 알고리즘 개발)

  • Choi, Jungsun;Jang, Hyo Jin;Shim, Woo Jin;An, Yoosoon;Shin, Hyeshop;Lee, Seung-Jin;Park, Soo Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.1-18
    • /
    • 2018
  • In Korea, 64% of the land is known as mountain area, but the definition and classification standard of mountain are not clear. Demand for utilization and development of mountain area is increasing. In this situation, the unclear definition and scope of the mountain area can lead to the destruction of the mountain and the increase of disasters due to indiscreet permission of forestland use conversion. Therefore, this study analyzed the variables and criteria that can extract the mountain boundaries through the questionnaire survey and the terrain analysis. We developed a mountain boundary extraction algorithm that can classify topographic mountain by using selected variables. As a result, 72.1% of the total land was analyzed as mountain area. For the three catchment areas with different mountain area ratio, we compared the results with the existing data such as forestland map and cadastral map. We confirmed the differences in boundary and distribution of mountain. In a catchment area with predominantly mountainous area, the algorithmbased mountain classification results were judged to be wider than the mountain or forest of the two maps. On the other hand, in the basin where the non-mountainous region predominated, algorithm-based results yielded a lower mountain area ratio than the other two maps. In the two maps, we was able to confirm the distribution of fragmented mountains. However, these areas were classified as non-mountain areas in algorithm-based results. We concluded that this result occurred because of the algorithm, so it is necessary to refine and elaborate the algorithm afterward. Nevertheless, this algorithm can analyze the topographic variables and the optimal value by watershed that can distinguish the mountain area. The results of this study are significant in that the mountain boundaries were extracted considering the characteristics of different mountain topography by region. This study will help establish policies for stable mountain management.

Properties of Hydrologic Cycle in Catchments in Different Land Use and Runoff Analysis by a Lumped Parametric Model

  • Takase, Keiji
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.48-56
    • /
    • 2000
  • In this paper, properties of hydrologic cycle in three experimental catchments were compared and different types of a lumped parametric model were applied to understand the hydrologic cycle in the catchments. One of them is a forest catchment and another one includes the reclained upland fields and last one does terraces paddy fields. The comparison of hydrologic properties showed that the differences in land used have great influences on the soil properties of surface layer, which cause changes in hydrologic processes such as evapotranspiration and storm runoff et.al. By the runoff analysis models, good agreements between observed and calculated discharge from the catchments were obtained and it was found that the differences in values of optimized model parameters and water budget components reflect those in the hydrologic cycle among them.

  • PDF

RESEARCH PAPERS : CHARACTERIZATION OF DISSOLVED ORGANIC MATTER IN A SHALLOW EUTROPHIC LAKE AND INFLOWING WATERS

  • Kim, Yong-Hwan;Lee, Seon-Hwa;Akio, Imai;Kazuo, Matsushige
    • Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • The seasonal patterns of dissolved organic matter (DOM) in Lake Kasumigaura, a shallow, eutrophic lake, and serveral DOM sources in its catchment area were investigated. DOM was fractionated using three resin adsorbents into classes: aquatic humic substances (AHS=humic acid+fulvic acid), hydrophobic neutrals (HoN), hydrophilic acids (HiA), bases (BaS) and hydrophilic neutrals (HiN). The DOM produced significantly different fraction distributions depending on the origin of sample. AHS and HiA prevailed over AHS in the lake while AHS and HiA existed at almost the same concentration levels in the rivers. AHS seems to be a more dominant component in rever water than lake water. The dominance of organic acids was also observed in the DOM sources: forest stream (FS), plowed field percolate (PFP), domestic sewage (DS) and sewage treatment plant effluent (STPE).

Properties of Hydrologic Cycle in Catchments in Different Land Use and Runoff Analysis by a Lumped Parametric Model

  • Keiji Takase
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.48-56
    • /
    • 2000
  • In this paper, properties of hydrologic cycle in three experimental catchments were compared and different types of a lumped parametric model were applied to understand the hydrologic cycle in the catchments. One of them is a forest catchment and another one includes the reclaimed upland fields and last one does terraces paddy fields. The comparison of hydrologic properties showed that the differences in land use have great influences on the soil properties of surface layer, which changes in hydrologic processes such as evapotranspiration and storm runoff et. al. By the runoff analysis models, good agreements between observed and calculated discharge from the catchments were obtained and it was found that the differences in values of optimized model parameters and water budget components reflect those in the hydrologic cycle among them.

  • PDF