• Title/Summary/Keyword: forest catchment

Search Result 97, Processing Time 0.031 seconds

Variation of Suspended Solid Concentration, Electrical Conductivity and pH of Stream Water in the Regrowth and Rehabilitation Forested Catchments, South Korea (개벌 재생림유역과 사방지 혼효림유역에서 강수시 계류수의 부유물질농도 및 전기전도도와 pH 변화)

  • Jun, Jaehong;Kim, Kyongha;Yoo, Jaeyun;Choi, Hyung Tae;Jeong, Yongho
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • This study was conducted to investigate how the qualities of the stream water vary during the event in the regrowth and rehabilitation catchments in Yangju, Gyeonggido, from June to September 2005. During the observation periods, we sampled the stream water continuously by an auto-sampler (ISCO, 6712FR). The sampled waters were analyzed for suspended solid concentration, electrical conductivity and pH. The suspended solid concentration during the event increased concurrently with the stream flow. The peak of suspended solid concentration usually precedes the peak flow. The maximum value of suspended solid concentration was 420.89 mg/l in the event 1 at the regrowth catchment. Among the events simultaneously sampled at both catchments, the maximum values of suspended solid concentration were 212.8 mg/l and 58.24 mg/l in the event 3 at the regrowth and rehabilitation catchment respectively. The maximum value of EC in each event showed in the early stage of rising limb. EC decreased during the rising limb, and then showed minimum value at peak flow. EC gradually increased to pre-event value after minimum one. pH varied in similar pattern with EC. The maximum value of suspended solid concentration during each event was 2.8 to 4.3 times higher at the regrowth catchment than at the rehabilitation catchment. And the EC during each event was higher at the regrowth catchment than at the rehabilitation catchment. This results indicate that a disturbed forest soil during clear cutting at regrowth catchment still has been unstable.

Hydro-Biogeochemical Approaches to Understanding of Water and Carbon Cycling in the Gwangneung Forest Catchment (수문생지화학적 접근을 통한 광릉 산림 유역의 물과 탄소 순환 이해)

  • Kim, Su-Jin;Lee, Dong-Ho;Kim, Joon;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2007
  • The information on flowpath, storage, residence time, and interactions of water and carbon transport in a catchment is the prerequisite to the understanding and predicting of water and carbon cycling in the mountainous landscapes of Korea. In this paper, along with some up-to-date results, we present the principal methods that are currently used in HydroKorea and CarboKorea research to obtain such information. Various catchment hydrological processes have been examined on the basis of the water table fluctuations, the end-member mixing model, the cross correlation analysis, and cosmogenic radioactive isotope activity. In the Gwangneung catchment, the contribution of surface discharge was relatively large, and the changes in the amount, intensity and patterns of precipitation affected both the flowpath and the mean residence time of water. Particularly during the summer monsoon, changes in precipitation patterns and hydrological processes in the catchment influenced the carbon cycle such that the persistent precipitation increased the discharge of dissolved organic carbon (DOC) concentrated in the surface soil layer. The improved understanding of the hydrological processes presented in this report will enable a more realistic assessment of the effects of climate changes on the water resource management and on the carbon cycling in forest catchments.

Influence of Land Use Change in the Forest Catchment on Sediment Accumulation at the Outlets of Rivers: Results of a Study in Kushiro Mire, Northern Japan (산림유역 개발이 하천 출구의 토사 퇴적에 미치는 영향: 일본 쿠시로습지의 연구결과)

  • Ahn, Young Sang;Nakamura, Futoshi
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.669-675
    • /
    • 2009
  • The purpose of this study was to examine the influence of land use change in the forest catchment on sedimentation rate at the outlets of rivers in Kushiro Mire that have been impacted by forest clearing, agricultural activity and river regulation. We analysed Caesium-137(Cs-137) concentration in sediment cores, and we estimated sedimentation rates and Cs-137 inventories over the last 50 years. Cs-137 from atomic bomb testing first entered the environment in 1954 which provides easily identifiable chronological markers in the sediment. Because Cs-137 is strongly absorbed into sediment particles, its redistribution occurs in association with sedimentary particles. Since the 1950s, the forest catchment areas draining into the mire have been developed intensively from forest areas to agricultural lands. The sediment accumulations at the outlets of rivers after 1954 ranged from 36 to 148 cm. The Cs-137 inventory is significantly greater than the reference sites which reflected natural accumulation conditions because sediment containing Cs-137 was carried from catchments into the outlets of the rivers. In addition, the Cs-137 inventory was correlated with the sedimentation rate. However, the Cs-137 inventories in Kuchoro and Kushiro river profiles were slowly increased with the sedimentation rates. This is because the sediment originating from scoured areas such as streambeds and banks contains a low level of Cs-137 concentration.

Application of The Semi-Distributed Hydrological Model(TOPMODEL) for Prediction of Discharge at the Deciduous and Coniferous Forest Catchments in Gwangneung, Gyeonggi-do, Republic of Korea (경기도(京畿道) 광릉(光陵)의 활엽수림(闊葉樹林)과 침엽수림(針葉樹林) 유역(流域)의 유출량(流出量) 산정(算定)을 위한 준분포형(準分布型) 수문모형(水文模型)(TOPMODEL)의 적용(適用))

  • Kim, Kyongha;Jeong, Yongho;Park, Jaehyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.197-209
    • /
    • 2001
  • TOPMODEL, semi-distributed hydrological model, is frequently applied to predict the amount of discharge, main flow pathways and water quality in a forested catchment, especially in a spatial dimension. TOPMODEL is a kind of conceptual model, not physical one. The main concept of TOPMODEL is constituted by the topographic index and soil transmissivity. Two components can be used for predicting the surface and subsurface contributing area. This study is conducted for the validation of applicability of TOPMODEL at small forested catchments in Korea. The experimental area is located at Gwangneung forest operated by Korea Forest Research Institute, Gyeonggi-do near Seoul metropolitan. Two study catchments in this area have been working since 1979 ; one is the natural mature deciduous forest(22.0 ha) about 80 years old and the other is the planted young coniferous forest(13.6 ha) about 22 years old. The data collected during the two events in July 1995 and June 2000 at the mature deciduous forest and the three events in July 1995 and 1999, August 2000 at the young coniferous forest were used as the observed data set, respectively. The topographic index was calculated using $10m{\times}10m$ resolution raster digital elevation map(DEM). The distribution of the topographic index ranged from 2.6 to 11.1 at the deciduous and 2.7 to 16.0 at the coniferous catchment. The result of the optimization using the forecasting efficiency as the objective function showed that the model parameter, m and the mean catchment value of surface saturated transmissivity, $lnT_0$ had a high sensitivity. The values of the optimized parameters for m and InT_0 were 0.034 and 0.038; 8.672 and 9.475 at the deciduous and 0.031, 0.032 and 0.033; 5.969, 7.129 and 7.575 at the coniferous catchment, respectively. The forecasting efficiencies resulted from the simulation using the optimized parameter were comparatively high ; 0.958 and 0.909 at the deciduous and 0.825, 0.922 and 0.961 at the coniferous catchment. The observed and simulated hyeto-hydrograph shoed that the time of lag to peak coincided well. Though the total runoff and peakflow of some events showed a discrepancy between the observed and simulated output, TOPMODEL could overall predict a hydrologic output at the estimation error less than 10 %. Therefore, TOPMODEL is useful tool for the prediction of runoff at an ungaged forested catchment in Korea.

  • PDF

Evapotranspiration Measurements using an Eddy Covariance Technique in the Seolmacheon Catchment (에디 공분산으로 관측된 설마천 산림 유역의 증발산)

  • Kwon, Hyou-Jung;Kim, Joon;Lee, Jung-Hoon;Jung, Sung-Won;Lee, Jin-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1112-1116
    • /
    • 2009
  • The importance of securing water resources and their efficient management has attracted more attention recently due to water deficit. In water budget analysis, however, evapotranspiration (${\lambda}E$) has been approximated as the residual in the water balance equation or estimated from empirical equations and assumptions. To minimize the uncertainties in these estimates, it is necessary to directly measure ${\lambda}E$. In this study, using the eddy covariance technique, we have measured ${\lambda}E$ in a mixed forest in the Seolmacheon catchment in Korea from September 2007 to December 2008. During the growing season (May - July), ${\lambda}E$ in this mixed forest averaged about 2.2 mm $d^{-1}$, whereas it was on average 0.5 mm $d^{-1}$ during the non-growing season in winter. The annual total ${\lambda}E$ in 2008 was 581 mm $y^{-1}$, which is about 1/3 of the annual precipitation of 1997 mm. Despite the differences in the amount and frequency of precipitation, the accumulated ${\lambda}E$ during the overlapping period (i.e., September to December) for 2007 and 2008 was both ${\sim}$ 110 mm, showing virtually no difference. The omega factor, which is a measure of decoupling between forest and the atmosphere, was on average 0.5, indicating that the contributions of equilibrium ${\lambda}E$ and imposed ${\lambda}E$ to the total ${\lambda}E$ were about the same. The results suggest that ${\lambda}E$in this mixed forest was controlled by various factors such as net radiation, vapor pressure deficit, and canopy conductance. In this study, based on the direct measurements of ${\lambda}E$, we have quantified the relative contribution of ${\lambda}E$in the water balance of a mixed forest in the Seolmacheon catchment. In combination with runoff data, the information on ${\lambda}E$ would greatly enhance the reliability of water budget analysis in this catchment.

  • PDF

Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image

  • Chun, Jung Hwa;Lim, Jong-Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.591-601
    • /
    • 2007
  • Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.

Evaluating Stability and Functionality of Hybrid Erosion Control Dam for Reducing Debris Flow Damage in Forested Catchment Nearby Urban Area (도시생활권의 토석류 피해 저감을 위한 복합형 사방댐의 안정성 및 기능성 평가)

  • Kim, Kidae;Kim, Dongyeob;Seo, Junpyo;Lee, Changwoo;Woo, Choongshik;Kang, Minjeng;Jeong, Sangseom;Lee, Dongkyun
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.59-70
    • /
    • 2018
  • The objective of this study was to develop erosion control dam for preventing disaster in consideration of characteristics of forested catchment near urban area, and to assess its stability and functionality to see its practicability in the field. Two types of hybrid erosion control dams were developed including debris flow prevention dam by using pillar and float board screen type and debris flow control dam by using groyne. Also, review about their static (sliding, overturning, bearing capacity) and dynamic (member force) stability was carried out. According to the result, most of the assessed items met standard safety level although there were some cases where assessed items were short of stability criteria against impact. Also, after miniature flume experiments based on the developed erosion control dam to prove structure function (material catch, deposit), it turned out the dam decreased flow sediment amount and velocity while increasing sediment-capturing capacity by 3.5 times on average compared to the one controlled without erosion control dam. When function of erosion control dam for forested catchment near urban area is quantified based on future flume experiments in a variety of conditions, the dams can be practically used in the urban area, contribution to effectively reducing debris flow damage.