• Title/Summary/Keyword: forest carbon sink index

Search Result 7, Processing Time 0.024 seconds

Development of the Forest Carbon Sink Index on Afforestation and Reforestation Activities (신규조림·재조림 활동의 산림탄소흡수원 지수 개발)

  • Song, Minkyung;Bae, Jae Soo;Seol, Mi Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.137-146
    • /
    • 2014
  • We have developed the Forest Carbon Sink Index on afforestation and reforestation activities, a regulation stated in article 26 of the 'Law on the maintenance and enhancement of carbon sink (Carbon Sink Law)', which took effect on March, 2013. According to the legal purpose to evaluate the performance of individual forest carbon offset projects and to compare each other at a certain point, values of the forest carbon sink index were calculated by the scoring method. Three criteria were established based on the Carbon Sink Law: 'Carbon' (real greenhouse gas reduction), 'Human' (socio-economic effect) and 'Nature' (environmental effect). Continuously, 9 indicators from the three criteria were selected by top-down approach; the adequacy of each criteria and indicators were reviewed through on-line Delphi survey; and finally weighted value of each criteria and indicators were assigned. To reflect the characteristics of the domestic forest carbon offset projects, which focus on corporate social responsibility-typed projects, we applied the score weighting method to minimize gaps among criteria and ones among indicators. After applying our newly developed forest carbon sink index to five domestic forest carbon offset projects, we could confirm that the criteria of 'Human' and 'Nature', which criteria are in relatively low weight, can play a role as an actual incentive to reduce negative socio-economic and environmental impacts. Based on performance evaluation of the five forest carbon offset project by the forest carbon sink index, the best or good performance project developers could be rewarded, and further the performance evaluation would work as an incentive to stimulate the involvement of domestic project developers in the field of forest carbon offset project.

Assessment of Biomass and Carbon Stock in Sal (Shorea robusta Gaertn.) Forests under Two Management Regimes in Tripura, Northeast India

  • Banik, Biplab;Deb, Dipankar;Deb, Sourabh;Datta, B.K.
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.209-223
    • /
    • 2018
  • We investigated tree composition, stand characteristics, biomass allocation pattern and carbon storage variability in Sal forests (Shorea robusta Garten.) under two forest management regimes (Sal forest and Sal plantation) in Tripura, Northeast India. The results revealed higher species richness (29 species), stand density of $1060.00{\pm}11.12stems\;ha^{-1}$ and diversity index ($1.90{\pm}0.08$) in Sal forest. and lower species richness (4 species), stand density of $ 230.00{\pm}37.22stems\;ha^{-1}$ and diversity index ($0.38{\pm}0.15$) in Sal plantation. The total basal cover $33.02{\pm}4.87m^2ha^{-1}$) and dominance ($0.76{\pm}0.08$) were found higher in Sal plantation than the Sal forest ($22.53{\pm}0.38m^2ha^{-1}$ and $0.23{\pm}0.02$ respectively). The total vegetation carbon density was recorded higher in Sal plantation ($219.68{\pm}19.65Mg\;ha^{-1}$) than the Sal forest ($167.64{\pm}16.73Mg\;ha^{-1}$). The carbon density estimates acquired in this study suggest that Sal plantation in Tripura has the potentiality to store a large amount of atmospheric carbon inspite of a very low species diversity. However, Sal forests has also an impending sink of carbon due to presence of large number of young trees.

Estimation of Carbon Uptake for Urban Green Space: A Case of Seoul (도시 녹지 가치 평가를 위한 탄소 흡수량 추정 - 서울시를 대상으로 -)

  • Lee, Dong-Kun;Park, Jin-Han;Park, Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.607-615
    • /
    • 2010
  • Urban green space is often at the centre of the debate on urban substantiality because it provides functions of space, e.g. for wildlife, recreation, growing vegetables, psychological wellbeing, social interaction, etc. Traditionally, the various functions of urban green spaces clearly show that green spaces contain important values that contribute to the overall quality of urban life. After Kyoto protocol, it has becoming important to more accurately evaluate carbon uptake by urban green space. Many studies have analyzed the benefits, costs, and carbon storage capacity associated with urban green space. These studies have been limited by a lack of research on urban tree biomass and carbon uptake by soil, such that estimates of carbon storage in urban systems. This study calculate more accurately the amount of carbon uptake by urban green space. This study also complement the existing methods to estimate the urban green space carbon uptake. It has been studied how to evaluate carbon uptake function of urban green space. The surface area of urban green space increased 5% by complemented method and carbon uptake is also increased. Based on this result, the carbon uptake per capita was analysed and compared to the area of carbon uptake. And this study discussed the reasons for the differences between the new and earlier estimates, as well as implications for our understanding of the global carbon cycle. In conclusion, these results could contribute as preliminary data to policy makers when climate change adaptation strategy is established.

Prediction of Carbon Accumulation within Semi-Mangrove Ecosystems Using Remote Sensing and Artificial Intelligence Modeling in Jeju Island, South Korea (원격탐사와 인공지능 모델링을 활용한 제주도 지역의 준맹그로브 탄소 축적량 예측)

  • Cheolho Lee;Jongsung Lee;Chaebin Kim;Yeounsu Chu;Bora Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.161-170
    • /
    • 2023
  • We attempted to estimate the carbon accumulation of Hibiscus hamabo and Paliurus ramosissimus, semimangroves native to Jeju Island, by remote sensing and to build an artificial intelligence model that predicts its spatial variation with climatic factors. The aboveground carbon accumulation of semi-mangroves was estimated from the aboveground biomass density (AGBD) provided by the Global Ecosystem Dynamics Investigation (GEDI) lidar upscaled using the normalized difference vegetation index (NDVI) extracted from Sentinel-2 images. In Jeju Island, carbon accumulation per unit area was 16.6 t C/ha for H. hamabo and 21.1 t C/ha for P. ramosissimus. Total carbon accumulation of semi-mangroves was estimated at 11.5 t C on the entire coast of Jeju Island. Random forest analysis was applied to predict carbon accumulation in semi-mangroves according to environmental factors. The deviation of aboveground biomass compared to the distribution area of semi-mangrove forests in Jeju Island was calculated to analyze spatial variation of biomass. The main environmental factors affecting this deviation were the precipitation of the wettest month, the maximum temperature of the warmest month, isothermality, and the mean temperature of the wettest quarter. The carbon accumulation of semi-mangroves predicted by random forest analysis in Jeju Island showed spatial variation in the range of 12.0 t C/ha - 27.6 t C/ha. The remote sensing estimation method and the artificial intelligence prediction method of carbon accumulation in this study can be used as basic data and techniques needed for the conservation and creation of mangroves as carbon sink on the Korean Peninsula.

The Impact of Air Temperature During the Growing Season on NEE of the Apple Orchard (사과 생육기의 기온이 사과원의 NEE에 미치는 영향)

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung;Ryu, Jong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1211-1215
    • /
    • 2012
  • Terrestrial ecosystem are a strong sink of carbon. Forest ecosystem, one of them, has been expected to play an important role in climate changing process by absorbing atmospheric carbon dioxide. On the other hand, agricultural ecosystem that consists mainly of annual crops is regarded as poor contributor to carbon accumulation, because its production (carbon hydrate) is decomposed into carbon at a short period, which is emitted to the atmosphere. However, it is thought that fruit tree plays a great role in decreasing atmospheric carbon dioxide concentration, same as forest. Net ecosystem exchange of $CO_2$ (NEE) was measured to estimate carbon fixation capacity using an eddy covariance (EC) system method in 2 years from 2005 to 2006 at an apple orchard in Uiseong, Gyeongbuk. Average air temperature values were higher in 2006 than in 2005 during the dormant season, and lower by about $5^{\circ}C$ over the growing season causing visible cold injuries. Accordingly, we investigated long-term exchange of carbon to determine how much difference of carbon fixation capacity was shown between 2006 and 2005 in terms of environmental and plant variables such as NEE, leaf area index (LAI), and Albedo. NEE was $4.8Mg\;C\;ha^{-1}yr^{-1}$ in 2005 and $4.7Mg\;C\;ha^{-1}yr^{-1}$ in 2006, respectively. Low temperature after July in 2006 decreased LAI values faster than those in 2005. Meanwhile, Albedo values were higher after July in 2006 than in 2005. These results show that the low temperature after July in 2006 apparently affected apple growth.

Genetic Variation of Flower Production in Breeding Seedling Seed Orchards of Quercus acuta and Q. glauca

  • Jeon, Koeun;Ro, Hee Seung;Kim, Ye-Ji;Gu, Da-Eun;Park, Ji-Min;Ryu, Sungryul;Kang, Kyu-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.2
    • /
    • pp.102-109
    • /
    • 2022
  • This study was conducted to test the significant difference of fertility variation among families and to select superior families for acorn production in the breeding seedling seed orchards (BSSOs) of Quercus acuta and Quercus glauca. The seed orchards were located in Jeju island and established by seedlings raised from selected parents for genetic testing in 2006. In the spring of 2021, the numbers of female and male flower were counted from 5 to 10 individuals per family in the BSSOs. To test statistical significance of which parameter is not satisfied through the normality test, we used a nonparametric analysis. Correlation analysis was performed to quantify the association between female and male flower production. As the results, the significant difference of flower production among families was found in both seed orchards. The averages of female flower production were 65.3 and 181.9 in Q. acuta and Q. glauca. The positive Spearman's rank correlation was existed between male and female flower production. Broad-sense heritability on female and male flower production were 0.191 and 0.147 in Q. acuta, and 0.285 and 0.068 in Q. glauca, respectively. Sexual asymmetry (e.g., maleness index) between female and male, and contribution variation among families (e.g., parental balance) were analyzed to find reasonable alternatives in the management of seed orchards. Effective population size of seed crops was predicted as a concept of status number. Loss of gene diversity (accumulation of group coancestry) would not be alarming in the BSSOs. Our results would be helpful to select breeding materials for establishing new seed orchards and to supply genetically improved seeds of evergreen oaks, which is one of the backbones of the strategy of carbon sink in the 2050 Carbon Neutrality of Korea Forest Service.

The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring (광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈)

  • Yang, Hyunyoung;Kang, Minseok;Kim, Joon;Ryu, Daun;Kim, Su-Jin;Chun, Jung-Hwa;Lim, Jong-Hwan;Park, Chan Woo;Yun, Soon Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.198-221
    • /
    • 2021
  • After large-scale reforestation in the 1960s and 1970s, forests in Korea have gradually been aging. Net ecosystem CO2 exchange of old-growth forests is theoretically near zero; however, it can be a CO2 sink or source depending on the intervention of disturbance or management. In this study, we report the CO2 budget dynamics of the Gwangneung deciduous old-growth forest (GDK) in Korea and examined the following two questions: (1) is the preserved GDK indeed CO2 neutral as theoretically known? and (2) can we explain the dynamics of CO2 budget by the common mechanisms reported in the literature? To answer, we analyzed the 15-year long CO2 flux data measured by eddy covariance technique along with other biometeorological data at the KoFlux GDK site from 2006 to 2020. The results showed that (1) GDK switched back-and-forth between sink and source of CO2 but averaged to be a week CO2 source (and turning to a moderate CO2 source for the recent five years) and (2) the interannual variability of solar radiation, growing season length, and leaf area index showed a positive correlation with that of gross primary production (GPP) (R2=0.32~0.45); whereas the interannual variability of both air and surface temperature was not significantly correlated with that of ecosystem respiration (RE). Furthermore, the machine learning-based model trained using the dataset of early monitoring period (first 10 years) failed to reproduce the observed interannual variations of GPP and RE for the recent five years. Biomass data analysis suggests that carbon emissions from coarse woody debris may have contributed partly to the conversion to a moderate CO2 source. To properly understand and interpret the long-term CO2 budget dynamics of GDK, new framework of analysis and modeling based on complex systems science is needed. Also, it is important to maintain the flux monitoring and data quality along with the monitoring of coarse woody debris and disturbances.