• Title/Summary/Keyword: forecasting technique

Search Result 357, Processing Time 0.032 seconds

Industrial load forecasting using the fuzzy clustering and wavelet transform analysis

  • Yu, In-Keun
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.233-240
    • /
    • 2000
  • This paper presents fuzzy clustering and wavelet transform analysis based technique for the industrial hourly load forecasting fur the purpose of peak demand control. Firstly, one year of historical load data were sorted and clustered into several groups using fuzzy clustering and then wavelet transform is adopted using the Biorthogonal mother wavelet in order to forecast the peak load of one hour ahead. The 5-level decomposition of the daily industrial load curve is implemented to consider the weather sensitive component of loads effectively. The wavelet coefficients associated with certain frequency and time localization is adjusted using the conventional multiple regression method and the components are reconstructed to predict the final loads through a five-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of fuzzy clustering and wavelet transform approach can be used as an attractive and effective means for the industrial hourly peak load forecasting.

  • PDF

Short-term load forecasting using Kohonen neural network and wavelet transform (코호넨 신경회로망과 웨이브릿 변환을 이용한 단기부하예측)

  • Kim, Chang-Il;Kim, Bong-Tae;Kim, Woo-Hyun;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.239-241
    • /
    • 1999
  • This paper proposes a novel wavelet transform and Kohonen neural network based technique for short-time load forecasting of power systems. Firstly. Kohonen Self-organizing map(KSOM) is applied to classify the loads and then the Daubechies D2, D4 and D10 wavelet transforms are adopted in order to forecast the short-term loads. The wavelet coefficients associated with certain frequency and time localisation are adjusted using the conventional multiple regression method and then reconstructed in order to forecast the final loads through a four-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of Kohonen neural network and wavelet transform approach can be used as an attractive and effective means for short-term load forecasting.

  • PDF

Estimation of ESP Probability considering Weather Outlook (기상예보를 고려한 ESP 유출 확률 산정)

  • Ahn, Jung Min;Lee, Sang Jin;Kim, Jeong Kon;Kim, Joo Cheol;Maeng, Seung Jin;Woo, Dong Hyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.264-272
    • /
    • 2011
  • The objective of this study was to develop a model for predicting long-term runoff in a basin using the ensemble streamflow prediction (ESP) technique and review its reliability. To achieve the objective, this study improved not only the ESP technique based on the ensemble scenario analysis of historical rainfall data but also conventional ESP techniques used in conjunction with qualitative climate forecasting information, and analyzed and assessed their improvement effects. The model was applied to the Geum River basin. To undertake runoff forecasting, this study tried three cases (case 1: Climate Outlook + ESP, case 2: ESP probability through monthly measured discharge, case 3: Season ESP probability of case 2) according to techniques used to calculate ESP probabilities. As a result, the mean absolute error of runoff forecasts for case 1 proposed by this study was calculated as 295.8 MCM. This suggests that case 1 showed higher reliability in runoff forecasting than case 2 (324 MCM) and case 3 (473.1 MCM). In a discrepancy-ratio accuracy analysis, the Climate Outlook + ESP technique displayed 50.0%. This suggests that runoff forecasting using the Climate Outlook +ESP technique with the lowest absolute error was more reliable than other two cases.

SVM Load Forecasting using Cross-Validation (교차검증을 이용한 SVM 전력수요예측)

  • Jo, Nam-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.485-491
    • /
    • 2006
  • In this paper, we study the problem of model selection for Support Vector Machine(SVM) predictor for short-term load forecasting. The model selection amounts to tuning SVM parameters, such as the cost coefficient C and kernel parameters and so on, in order to maximize the prediction performance of SVM. We propose that Cross-Validation method can be used as a model selection algorithm for SVM-based load forecasting technique. Through the various experiments on several data sets, we found that the difference between the prediction error of SVM using Cross-Validation and that of ideal SVM is less than 5%. This shows that SVM parameters for load forecasting can be efficiently tuned by using Cross-Validation.

Development of the Wind Power Forecasting System, KIER Forecaster (풍력발전 예보시스템 KIER Forecaster의 개발)

  • Kim, Hyun-Goo;Jang, Mun-Seok;Kyong, Nam-Ho;Lee, Yung-Seop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.323-324
    • /
    • 2006
  • In the present paper a forecasting system of wind power generation for Walryong Site, Jejudo is presented, which has been developed and evaluated as a first step toward establishing Korea Forecasting Model of Wind Power Generation. The forecasting model, KIER forecaster is constructed based on statistical models and is trained with wind speed data observed at Gosan Weather Station nearby Walryong Si to. Due to short period of measurements at Walryong Site for training statistical model, Gosan wind data were substituted and transplanted to Walryong Site by using Measure-Correlate-Predict technique. Three-hour advanced forecast ins shows good agreement with the measurement at Walryong site with the correlation factor 0.88 and MAE(mean absolute error) 15% under.

  • PDF

Forecasting Project Cost and Time using Fuzzy Set Theory and Contractors' Judgment

  • Alshibani, Adel
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.174-178
    • /
    • 2015
  • This paper presents a new method for forecasting construction project cost and time at completion or at any intermediate time horizon of the project duration. The method is designed to overcome identified limitations of current applications of earned value method in forecasting project cost and time. The proposed method usesfuzzy set theory to model uncertainties associated with project performance and it integrates the earned value technique and the contractors' judgement. The fuzzy set theory is applied as an alternative approach to deterministic and probabilistic methods. Using fuzzy set theory allows contractors to: (1) perform risk analysis for different scenarios of project performance indices, and (2) perform different scenarios expressing vagueness and imprecision of forecasted project cost and time using a set of measures and indices. Unlike the current applications of Earned Value Method(EVM), The proposed method has a numberof interesting features: (1) integrating contractors' judgement in forecasting project performance; (2) enabling contractors to evaluate the risk associated with cost overrun in much simpler method comparing with that of simulation, and (3) accounting for uncertainties involved in the forecasting project cost.

  • PDF

Application of Risk Management to Forecasting Transportation Demand by Delphi Technique (Delphi기법을 통한 교통수요예측 Risk Management 적용 방안)

  • Chung, Sung-Bong
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.267-273
    • /
    • 2011
  • Since 'The Act on Private Investment of The Infrastructure' was established in 1994, private investment as well as government's investment in transport infrastructure has been active. However investment in transport infrastructure has more risks than others' due to uncertainty both in traffic volume and in construction cost. In the current appraisal procedure of deciding transportation infrastructure investment, instead of risk management, the sensitivity analysis considering only the changes of benefit, cost and social discount rate which are main factor affecting economic feasibility is carried out. Therefore the uncertainty of various factors affecting demand, cost and benefit are not considered in feasibility study. In this study the problems in current investment appraisal system were reviewed. Using Delphi technique the major factors which have high uncertainty in feasibility study were surveyed and then improvement plan was suggested in the respective of classic 4 step demand forecasting method. The range estimation technique was also mentioned to deal with the uncertainty of the future.

Estimating multiplicative competitive interaction model using kernel machine technique

  • Shim, Joo-Yong;Kim, Mal-Suk;Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.825-832
    • /
    • 2012
  • We propose a novel way of forecasting the market shares of several brands simultaneously in a multiplicative competitive interaction model, which uses kernel regression technique incorporated with kernel machine technique applied in support vector machines and other machine learning techniques. Traditionally, the estimations of the market share attraction model are performed via a maximum likelihood estimation procedure under the assumption that the data are drawn from a normal distribution. The proposed method is shown to be a good candidate for forecasting method of the market share attraction model when normal distribution is not assumed. We apply the proposed method to forecast the market shares of 4 Korean car brands simultaneously and represent better performances than maximum likelihood estimation procedure.

Short-term demand forecasting Using Data Mining Method (데이터마이닝을 이용한 단기부하예측)

  • Choi, Sang-Yule;Kim, Hyoung-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.126-133
    • /
    • 2007
  • This paper proposes information technology based data mining to forecast short term power demand. A time-series analyses have been applied to power demand forecasting, but this method needs not only heavy computational calculation but also large amount of coefficient data. Therefore, it is hard to analyze data in fast way. To overcome time consuming process, the author take advantage of universally easily available information technology based data-mining technique to analyze patterns of days and special days(holidays, etc.). This technique consists of two steps, one is constructing decision tree, the other is estimating and forecasting power flow using decision tree analysis. To validate the efficiency, the author compares the estimated demand with real demand from the Korea Power Exchange.