• Title/Summary/Keyword: forecast-warning system

Search Result 54, Processing Time 0.023 seconds

High-Precision and 3D GIS Matching and Projection Based User-Friendly Radar Display Technique (3차원 GIS 정합 및 투영에 기반한 사용자 친화적 레이더 자료 표출 기법)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lee, Dong-Ryul;Lim, Sanghun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1145-1154
    • /
    • 2014
  • In recent years, as frequency and intensity of severe weather disasters such as flash flood have been increasing, providing accurate and prompt information to the public is very important and needs of user-friendly monitoring/warning system are growing. This paper introduces a method that re-produces radar observations as multimedia contents and applies reproduced data to mesh-up services. In addition, a accurate GIS matching technique to help to track the exact location going on serious atmospheric phenomena is presented. The proposed method create multimedia contents having structures such as two dimensional images, vector graphics or three dimensional volume data by re-producing various radar variables obtained from a weather radar. After then, the multimedia formatted weather radar data are matched with various detailed raster or vector GIS map platform. Results of simulation test with various scenarios indicate that the display system based on the proposed method can support for users to figure out easily and intuitively routes and degrees of risk of severe weather. We expect that this technique can also help for emergency manager to interpret radar observations properly and to forecast meteorological disasters more effectively.

Forecasting of Daily Minimum Temperature during Pear Blooming Season in Naju Area using a Topoclimate-based Spatial Interpolation Model (공간기후모형을 이용한 나주지역 배 개화기 일 최저기온 예보)

  • Han, J.H.;Lee, B.L.;Cho, K.S.;Choi, J.J.;Choi, J.H.;Jang, H.I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.209-215
    • /
    • 2007
  • To improve the accuracy of frost warning system for pear orchard in a complex terrain in Naju area, the daily minimum temperature forecasted by Korea Meteorological Administration (KMA) was interpolated using a regional climate model based on topoclimatic estimation and optimum scale interpolation from 2004 to 2005. Based on the validation experiments done for three pear orchards in the spring of 2004, the results showed a good agreement between the observed and predicted values, resulting in improved predictability compared to the forecast from Korea Meteorological Administration. The differences between the observed and the predicted temperatures were $-2.1{\sim}2.7^{\circ}C$ (on average $-0.4^{\circ}C$) in the valley, $-1.6{\sim}2.7^{\circ}C$ (on average $-0.4^{\circ}C$) in the riverside and $-1.1{\sim}3.5^{\circ}C$ (on average $0.6^{\circ}C$) in the hills. Notably, the errors have been reduced significantly for the valley and riverside areas that are more affected by the cold air drainage and more susceptible to frost damage than hills.

On the Study of Developement for Urban Meteorological Service Technology (도시기상서비스 기술 개발에 관한 연구)

  • Choi, Young-Jean;Kim, Chang-Mo;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.149-157
    • /
    • 2011
  • Urbanization of the world's population has given rise to more than 450 cities around the world with populations in excess of 1 million (megacity) and more than 25 so-called metacities with populations over 10 million (Brinkhoff, 2010). The United States today has a total resident population of more than 308,500,000 people, with 81 percent residing in cities and suburbs as of mid - 2005 (UN, 2008). Urban meteorology is the study of the physics, dynamics, and chemistry of the interactions of Earth's atmosphere and the urban built environment, and the provision of meteorological services to the populations and institutions of metropolitan areas. While the details of such services are dependent on the location and the synoptic climatology of each city, there are common themes, such as enhancing quality of life and responding to emergencies. Experience elsewhere (e.g., Shanghai, Helsinki, Tokyo, Seoul, etc.) shows urban meteorological support is a key part of an integrated or multi-hazard warning system that considers the full range of environmental challenges and provides a unified response from municipal leaders. Urban meteorology has come to require much more than observing and forecasting the weather of our cities and metropolitan areas. Forecast improvement as a function of more and better observations of various kinds and as a function of model resolution, larger ensembles, predicted probability distributions; Responses of emergency managers, government officials, and users to improved and probabilistic forecasts; Benefits of improved forecasts in reduction of loss of life, property damage, and other adverse effects. A national initiative to enhance urban meteorological services is a high-priority need for a wide variety of stakeholders, including the general, commerce and industry, and all levels of government. Some of the activities of such an initiative include: conducting basic research and development; prototyping and other activities to enable very--short and short range predictions; supporting and improving productivity and efficiency in commercial and industrial sectors; and urban planning for long term sustainability. In addition urban test-beds are an effective means for developing, testing, and fostering the necessary basic and applied meteorological and socioeconomic research, and transitioning research findings to operations. An extended, multi-year period of continuous effort, punctuated with intensive observing and forecasting periods, is envisioned.

The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining (데이터마이닝 기법을 활용한 비외감기업의 부실화 유형 분석)

  • Lee, Su Hyun;Park, Jung Min;Lee, Hyoung Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.111-131
    • /
    • 2015
  • There are only a handful number of research conducted on pattern analysis of corporate distress as compared with research for bankruptcy prediction. The few that exists mainly focus on audited firms because financial data collection is easier for these firms. But in reality, corporate financial distress is a far more common and critical phenomenon for non-audited firms which are mainly comprised of small and medium sized firms. The purpose of this paper is to classify non-audited firms under distress according to their financial ratio using data mining; Self-Organizing Map (SOM). SOM is a type of artificial neural network that is trained using unsupervised learning to produce a lower dimensional discretized representation of the input space of the training samples, called a map. SOM is different from other artificial neural networks as it applies competitive learning as opposed to error-correction learning such as backpropagation with gradient descent, and in the sense that it uses a neighborhood function to preserve the topological properties of the input space. It is one of the popular and successful clustering algorithm. In this study, we classify types of financial distress firms, specially, non-audited firms. In the empirical test, we collect 10 financial ratios of 100 non-audited firms under distress in 2004 for the previous two years (2002 and 2003). Using these financial ratios and the SOM algorithm, five distinct patterns were distinguished. In pattern 1, financial distress was very serious in almost all financial ratios. 12% of the firms are included in these patterns. In pattern 2, financial distress was weak in almost financial ratios. 14% of the firms are included in pattern 2. In pattern 3, growth ratio was the worst among all patterns. It is speculated that the firms of this pattern may be under distress due to severe competition in their industries. Approximately 30% of the firms fell into this group. In pattern 4, the growth ratio was higher than any other pattern but the cash ratio and profitability ratio were not at the level of the growth ratio. It is concluded that the firms of this pattern were under distress in pursuit of expanding their business. About 25% of the firms were in this pattern. Last, pattern 5 encompassed very solvent firms. Perhaps firms of this pattern were distressed due to a bad short-term strategic decision or due to problems with the enterpriser of the firms. Approximately 18% of the firms were under this pattern. This study has the academic and empirical contribution. In the perspectives of the academic contribution, non-audited companies that tend to be easily bankrupt and have the unstructured or easily manipulated financial data are classified by the data mining technology (Self-Organizing Map) rather than big sized audited firms that have the well prepared and reliable financial data. In the perspectives of the empirical one, even though the financial data of the non-audited firms are conducted to analyze, it is useful for find out the first order symptom of financial distress, which makes us to forecast the prediction of bankruptcy of the firms and to manage the early warning and alert signal. These are the academic and empirical contribution of this study. The limitation of this research is to analyze only 100 corporates due to the difficulty of collecting the financial data of the non-audited firms, which make us to be hard to proceed to the analysis by the category or size difference. Also, non-financial qualitative data is crucial for the analysis of bankruptcy. Thus, the non-financial qualitative factor is taken into account for the next study. This study sheds some light on the non-audited small and medium sized firms' distress prediction in the future.