• 제목/요약/키워드: forecast variance

검색결과 69건 처리시간 0.024초

Yeo-Johnson 변환을 통한 비대칭 GARCH 모형 (Asymmetric GARCH model via Yeo-Johnson transformation)

  • 정환식;조신섭;여인권
    • 응용통계연구
    • /
    • 제37권1호
    • /
    • pp.39-48
    • /
    • 2024
  • 이 논문에서는 비대칭 지렛대 효과를 처리하기 위한 확장된 GARCH 모형을 소개한다. 표준 GARCH 모형의 분산은 이전의 조건부 분산과 이전의 잔차 제곱 항으로 구성되어 있다. 잔차 제곱항으로는 비대칭 지렛대 효과를 모형화할 수 없는데 이 논문에서는 Yeo-Johnson 변환을 이용하여 지렛대 효과를 설명하는 확장된 GARCH 모형을 제안한다. Yeo-Johnson 변환은 변환 모수를 조절하여 비대칭 자료를 보다 정규성 또는 대칭성을 만족하도록 만든데 우리는 Yeo-Johnson 변환의 성질을 역으로 이용하여 비대칭 변동성을 모형화 한다. 제안 모형의 특징에 대해 살펴보고 모수 추정에 대해 알아본다. 제안 모형에서 예측과 예측구간을 어떻게 구하는지 살펴보고 실증 자료분석을 통해 제안모형과 GARCH, 비대칭 지렛대 효과를 모형화한 다른 GARCH 모형을 비교해 본다.

COVID-19 팬데믹으로 인한 체선율 증가와 부정기선 운임지수의 인과성 분석 (Analysis of Causality of the Increase in the Port Congestion due to the COVID-19 Pandemic and BDI(Baltic Dry Index))

  • 이충호;박근식
    • 한국항만경제학회지
    • /
    • 제37권4호
    • /
    • pp.161-173
    • /
    • 2021
  • 2008년도 미국 리먼브라더스 파산으로 인한 미국발 금융위기의 파급 효과로 전 세계적으로 맞은 경제위기 상황에서 해운산업 또한 폭락하였으며, 부정기선 시장은 이후 13년 간 불황을 유지해왔다. 2020년 COVID-19 팬데믹으로 불안정안 세계경제 상황에서 해운시장 또한 폭락하여 어려움을 겪었지만, 예상과 다르게 2020년 말부터 상승세로 전환되며 2021년에는 2008년도 호황기의 용선료 수준을 넘어서서 계속적으로 상승세를 유지하고 있다. 2021년 5월에 발표된 Clarksons 보고서에서는 2020년 코로나로 인한 물동량 감소가 2020년 말까지 코로나 이전 수준으로 회복되었고, 파나막스선형 선복 103~104% 정도의 부정기 벌크선 선복량이 항만에 체선으로 묶여있는 상황으로 벌크선의 수익은 최근 몇 달 동안 10년 만에 최고치로 상승한 것으로 나타났다. 이에 본 연구에서는 대표적인 건화물선 운임지수인 BDI에 영향을 미치는 요인으로 공급측면의 케이프와 파나막스 선형의 선복량과 체선율, 수요측면에서 주요 선적화물인 철광석과 석탄 물동량과의 인과성 검정과 벡터자기회귀모형(VAR)을 추정하여 충격반응함수와 예측오차분산분해를 통하여 COVID-19 펜데믹으로 인한 항만에서의 검역 강화와 하역인부의 전염병 감염 등으로 작업지연에 따른 체선 발생이 부정기선 시장 상승에 영향을 미치는지 분석하고 팬데믹 이후의 해운시황 예측에 도움이 되려는데 그 목적이 있다. 2016년 1월부터 2021년 7월까지의 데이터를 사용하여 변수들과 BDI의 인과성 검정 결과 선복량과 체선율 변수에서 인과성이 나타났으며, 충격반응함수의 결과 t시점에서 발생한 케이프,파나막스의 체선율 표준편차 1단위의 충격은 BDI에 양(+)의 반응을 보였으며 4기에 최고치를 기록한 후 점차 감소하였다. 충격에 대한 반응의 신뢰구간 상한과 하한 모두 양(+)의 구간으로 유의미한 반응이었다. 예측오차 분산분해분석 결과 BDI 변동에 영향을 미치는 설명력은 체선율, 선복량 순으로 나타났으며, 체선율(CGTN)은 운임지수의 BDI의 변화에 2기에는 2.5%의 설명력을 보였으며 4기부터 10%를 넘어 BDI상승에 25%까지 설명력을 갖는 것으로 나타났다. 이번 연구에서는 수요와 공급의 직접적인 요인 변수외에도 COVID-19 팬데믹으로 인한 항만에서 체선율 증가에 따른 공급량 감소 효과인 체선율을 변수로 사용하여 부정기 건화물선 운임지수(BDI)와의 인과성 및 영향에 대하여 분석하였다. 위드코로나로 전환되어 체선율이 감소할 경우 해운시황의 하락 리스크가 있을 것으로 예상 된다. 하지만 2023년부터 시행되는 선박 배기가스 탄소배출 감축 규제와 2021년 발주되는 신조선들의 인도시기는 2023년 이후이기 때문에 내년까지도 선복량은 부족할 수 밖에 없을 것으로 예상되어 체선율이 감소되고 해운시황이 하락하더라도 부정기 벌크선박들의 수익성은 2008년 이후의 불황기와는 다르게 나쁘지 않은 수준으로 유지될 것으로 예상된다. 이번 COVID-19 팬데믹발 세계경제 불안정성은 경제적 요인이 아닌 팬데믹으로 인한 생태적 위협으로부터 발생했다는 점에서 과거 경제위기와는 다른 관점에서 분석해 볼 필요가 있다고 생각되며 간접적으로 해운시장에서 공급감소 효과로 나타나는 체선율과의 인과성과 설명력을 분석하였다는데 의의가 있다고 할 수 있다.

지능형 전망모형을 결합한 로보어드바이저 알고리즘 (Robo-Advisor Algorithm with Intelligent View Model)

  • 김선웅
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.39-55
    • /
    • 2019
  • 최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.

통화선물의 가격예시 기능과 변동성 전이효과 (The Price Discovery ana Volatility Spillover of Won/Dollar Futures)

  • 김석진;도영호
    • 재무관리연구
    • /
    • 제23권1호
    • /
    • pp.49-67
    • /
    • 2006
  • 본 논문은 2005년 3월 2일부터 2005년 5월 30일까지 현물환율, 통화선물가격과 통화선물거래량의 일중자료 각각 4,473개를 사용하여 원/달러 통화선물의 가격예시 기능과 변동성 전이효과에 대해 연구하였다. 단위근 검정에서 현물환율과 통화선물가격은 단위근이 있는 불안정한 시계열이었지만, 공적분 검정에서 두 시계열이 장기적 균형관계를 이루고 있었다. 현물환수익률, 통화선물수익률, 통화선물거래량은 안정적인 시계열이었다. 나아가, 현물환수익률과 통화선물수익률의 변동성에 비대칭성이 존재하지 않았다. 이변량 GARCH 오차수정(BGARCH-EC) 모형의 평균방정식 분석결과, 통화선물수익률의 증가가 5분 후 현물환수익률을 증가시켰다. 이는 통화선물수익률이 현물환수익률을 선행한다는 것으로 가격예시 기능이 작동함을 의미한다. 또한 두 수익률이 이루는 장기적인 균형관계는 현물환수익률을 예측하는 데 도움이 될 수 있다. 분산방정식의 분석결과, 통화선물수익률에 기인하는 단기적 충격이 현물환수익률의 조건부 분산에 양의 영향을 미치는 것으로 나타났다. 이는 통화선물수익률이 현물환수익률에 대해서 변동성 전이효과를 가짐을 뜻한다. 통화선물거래량 더미 변수가 두 수익률에 대해 아무런 영향을 미치지 못했지만 두 수익률의 조건부 분산에 유의한 양의 영향을 미쳤다.

  • PDF

유가와 벌크선 운임의 상관관계 분석에 관한 연구 (The Inter-correlation Analysis between Oil Prices and Dry Bulk Freight Rates)

  • 안병철;이기환;김명희
    • 한국항해항만학회지
    • /
    • 제46권3호
    • /
    • pp.289-296
    • /
    • 2022
  • 본 연구의 목적은 유가와 벌크선 운임의 상관관계 및 영향력을 검증하는 것이다. 탄소배출 감축을 위해 석유의존도를 줄이고 친환경연료 선박의 개발이 추진되고 있지만, 현재의 진행상황으로 볼 때, 상당한 시간이 필요할 것으로 보인다. 반면, COVID 19 팬데믹 및 러시아의 우크라이나 침공에 따른 유가 변동성이 커지고 있다. 해운업에서 연료비용이 큰 비중을 차지하고 있으므로, 유가가 운임에 어떠한 영향을 주는지 점검이 필요하다. 유가 변수로 Brent, Dubai, WTI 그리고 운임변수는 BDI, BCI, BPI로 2008년 10월부터 2022년 2월까지 월별 데이터를 사용하였다. VAR(Vector Autoregressive) 모형을 이용한 상관관계 분석에서 BDI에 대한 충격반응 분석은 WTI가 가장 큰 영향을 미쳤고, 그 다음으로 두바이유, 브렌트유 순으로 차이를 보였다. 예측오차 분산분해 분석결과는 BDI에 대해 WTI, 두바이유, 브렌트유 순으로 설명력의 차이를 보였다. 선종별로 차이는 있으나, 대체로 WTI와 두바이유가 설명력이 높았다.

VAR과 VECM 모형을 이용한 해운시장 분석 (Analysis of Shipping Markets Using VAR and VECM Models)

  • 고병욱
    • 무역학회지
    • /
    • 제48권3호
    • /
    • pp.69-88
    • /
    • 2023
  • 본 연구는 VAR 및 VECM 모형을 활용해 컨테이너선, 건화물선, VLCC(유조선) 해운시장의 물동량(수요), 선박량(공급), 운임(가격)의 동태적 특성을 분석한다. 이를 통해 시장 참여자들이 실제 업무에서 인지한 시장 특성을 통계적 패턴으로 이해할 수 있을 것으로 기대된다. 세 가지 해운시장 모두에서 나타나는 통계적 패턴은 다음과 같다: 1) 그란저 인과성 분석 결과, 전기에 선박량이 증가하면 다음기에는 운임이 하락한다. 2) 충격-반응 분석 결과, 물동량 충격은 운임을 상승시키고, 선박량 충격은 운임을 하락시킨다. 3) 물동량 충격, 선박량 충격, 운임 충격 중에서 운임 충격이 압도적으로 큰 것으로 나타났다. 4) 조정결정계수(adjR2)의 비교 결과, 선박량이 해운시장의 자체 변수(물동량, 선박량, 운임)에 의해 가장 잘 설명된다. 5) 공적분 벡터의 추정 결과, 물동량 증가는 운임을 상승시키고, 선박량 증가는 운임을 하락시킨다. 6) 교정 계수 추정 결과, 전기에 운임이 장기 균형보다 높으면 다음기에 하락 압력이 존재한다.

펀드플로우와 시장위험 (Fund Flow and Market Risk)

  • 정효윤;박종원
    • 재무관리연구
    • /
    • 제27권2호
    • /
    • pp.169-204
    • /
    • 2010
  • 본 논문에서는 한국금융시장의 자료를 이용하여 펀드플로우와 시장위험간의 관계를 검증하고, 펀드플로우의 변화가 시장의 위험수준의 변화를 설명할 수 있는지를 분석하였다. 이는 펀드플로우와 시장위험간의 관계에 대한 학문적 시사점을 제공하고 일각에서 제기하고 있는 펀드런에 의한 시스템리스크 유발가능성을 탐색한다는 점에서 의미를 갖는다. 주식형 펀드플로우와 주식시장 위험에 대한 분석결과는 펀드자금의 유입이 시장위험과 (+)의 관계를 가짐을 보여준다. 채권형 펀드의 경우 펀드플로우는 채무불이행위험프리미엄과 음(-)의 관계를, 기간프리미엄과는 양(+)의 관계를 갖는다. MMF의 결과는 MMF로의 자금유입이 시장의 유동성위험을 줄여줌을 보여준다. 예측오차의 분산분해를 통한 전이지수의 구성을 통해 펀드플로우의 변화가 시장위험의 변화를 얼마나 설명할 수 있는지를 분석한 결과는 설명력이 제한적이며 변동이 매우 심한 결과를 보여준다. 주식시장의 경우 한국자본시장에서 서브프라임 사태의 영향이 본격화된 시기인 2007년 말 이후 펀드플로우에 가해진 변화가 시장의 위험변동을 설명하는 비율이 상대적으로 크게 증가해 이러한 추세가 상당기간 지속되는 모습을 보인다. 반면, 채권시장의 경우 2008년 말 이후 펀드플로우에 가해진 충격이 채권시장의 위험에 전이되는 현상이 지속적으로 나타나며, 단기 금융시장의 경우에는 이러한 현상이 체계적으로 발생하지 않는다. 주식시장과 채권시장에서 보인 특정시기를 중심으로 하는 전염효과의 지속현상은 펀드플로우에 가해진 예상치 못한 충격이 시장위험을 증가시킬 수 있음을 의미한다. 그러나 회귀분석과 VAR 모형의 추정결과, 그리고 분산분해의 설명력 등을 고려하여 판단할 때 본 연구의 결과는 펀드플로우의 변화가 시장위험의 변동을 설명하는 설명력이 제한적이어서 일부에서 우려하는 펀드런에 따른 금융시장의 시스템리스크의 증가와 전반적인 위기의 확산으로 나타날 가능성은 높지 않음을 말해준다.

  • PDF

상황인식 기반 지능형 최적 경로계획 (Intelligent Optimal Route Planning Based on Context Awareness)

  • 이현정;장용식
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

핸디사이즈 운임지수 및 스팟용선료 변화에 영향을 미치는 요인 분석 (Factor Analysis Affecting on Changes in Handysize Freight Index and Spot Trip Charterage)

  • 이충호;김태우;박근식
    • 한국항만경제학회지
    • /
    • 제37권2호
    • /
    • pp.73-89
    • /
    • 2021
  • 핸디사이즈 벌크선 시장은 중대형 선박으로 운송이 불가능한 다양한 화물을 운송할 수 있으며, Spot용·대선 시장이 활성화 되어 있고 중대형 벌크선과 독립적인 성격의 시장으로 단기간에 변화하는 시황 및 용선료 변동성에 의한 위험이 보다 많은 시장이다. 본 연구에서는 부정기 벌크선 선형에서 핸디사이즈 운임지수(BHSI)와 Spot용선료에 영향을 미치는 요인들을 검정하고 요인들의 과거 값을 이용하여 종속변수의 동태적 반응을 파악 및 단기 예측을 위하여 벡터자기회귀모형(VAR)을 이용하여 분석을 하였다. 인과성 검정 결과 핸디사이즈의 주요 선적 화물인 원료탄, 일본후판, 열연강판의 가격과 선복량, 선박유가와 인과관계가 나타났으며, VAR모형의 적정시차와 안정성을 확인 후 충격반응함수와 예측오차분해분석을 실시하였다. 충격반응함수 분석 결과 원료탄 가격, 열연강판 가격, 선박유가 3가지 변수는 신뢰구간 상한과 하한이 모두 같은 구간으로 유의하다고 나타났으며, 열연강판 가격의 충격이 가장 유의한 영향을 미치는 것으로 확인되었다. 운임지수(BHSI)와 Spot용선료 두 종속변수 모두 거의 동일한 결과로 나타났으며 t시점에서 발생한 원료탄가격의 표준편차 1단위의 충격에 양(+)의 영향, 열연강판 가격의 충격에 양(+)의 영향, 선박유가의 충격에는 음(-)의 영향의 결과를 보였다. 예측오차 분산분해분석 결과 운임지수(BHSI)와 Spot용선료에 영향을 미치는 설명력은 열연강판 가격, 원료탄 가격, 선박유가, 일본후판 가격, 선복량 순으로 동일하게 나타났으며 열연강판 가격의 설명력은 3기부터 점차 상승하여 운임지수에는 30%, Spot용선료에는 26%까지 영향을 미친다고 나타났다. 기존 선행연구와 차별화하여 단기적인 시차 영향을 알아보기 위해 주요 선적화물의 월간 가격 데이터를 사용하여 분석을 수행하였으며, 월 단위 시황 예측이 가능한 유의미한 결과를 도출하였다. 이 연구가 핸디사이즈 선박을 운항하는 선사와 핸디사이즈 용·대선 시장 관계자들에게 단기적인 시황 예측에 도움이 될 수 있다는데 의의가 있다고 생각한다.