• 제목/요약/키워드: force-deflection

검색결과 636건 처리시간 0.024초

Study on the Improvement of the Image Analysis Speed in the Digital Image Correlation Measurement System for the 3-Point Bend Test

  • Choi, In Young;Kang, Young June;Hong, Kyung Min;Kim, Seong Jong;Lee, Gil Dong
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.523-530
    • /
    • 2014
  • Machine material and structural strain are critical factors for appraising mechanical properties and safety. Particularly in three and four-point bending tests, which appraise the deflection and flexural strain of an object due to external force, measurements are made by the crosshead movement or deflection meter of a universal testing machine. The Digital Image Correlation (DIC) method is one of the non-contact measurement methods. It uses the image analyzing method that compares the reference image with the deformed image for measuring the displacement and strain of the objects caused by external force. Accordingly, the advantage of this method is that the object's surface roughness, shape, and temperature have little influence. However, its disadvantage is that it requires extensive time to compare the reference image with the deformed image for measuring the displacement and strain. In this study, an algorithm is developed for DIC that can improve the speed of image analysis for measuring the deflection and strain of an object caused by a three-point bending load. To implement this algorithm for improving the speed of image analysis, LabVIEW 2010 was used. Furthermore, to evaluate the accuracy of the developed fast correlation algorithm, the deflection of an aluminum specimen under a three-point bending load was measured by using the universal test machine and DIC measurement system.

자율가공 시스템을 위한 가공면 오차보상에 관한 연구 (Study of Machined Surface Error Compensation for Autonomous Manufacturing System)

  • 서태일
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.75-84
    • /
    • 2000
  • The main goal of our research is to compensate the milled surface errors induced by the tool deflection effects, which occur during the milling process. First, we predict cutting forces and tool deflection amount. Based on predicted deflection effects, we model milled surface shapes. We present a compensation methodology , which can generate a new tool trajectory, which is determined so as to compensate the milled surface errors. By considering manufacturing tolerance, tool path compensation is generalized. To validate the approaches proposed in this paper, we treat an illustrative example of profile milling process by using flat end mill. Simulation and experimental results are shown.

  • PDF

Application of the Boundary Element Method to Finite Deflection of Elastic Bending Plates

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 2003
  • The present study deals with an approximate integral equation approach to finite deflection of elastic plates with arbitrary plane form. An integral formulation leads to a system of boundary integral equations involving values of deflection, slope, bending moment and transverse shear force along the edge. The basic principles of the development of boundary element technique are reviewed. A computer program for solving for stresses and deflections in a isotropic, homogeneous, linear and elastic bending plate is developed. The fundamental solution of deflection and moment is employed in this program. The deflections and moments are assumed constant within the quadrilateral element. Numerical solutions for sample problems, obtained by the direct boundary element method, are presented and results are compared with known solutions.

압전 구동 방식의 Polydimethylsiloxane(PDMS) 마이크로 펌프 (Piezoelectric-Actuated Polydimethylsiloxane(PDMS) Micropump with Diffusers)

  • 김진호;김영호;김용상
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권10호
    • /
    • pp.487-491
    • /
    • 2003
  • The low-cost, simple structured micropump which is actuated by piezoelectric-discs, is fabricated with polydimethylsiloxane (PDMS) and the performances of the micropump, such as pump rate and backpressure, are characterized. The PDMS micropump with diffusers instead of passive check valves as a flow-rectifying element was fabricated. The deflection of glass diaphragm measured by atomic force microscope (AFM) is about 0.4$\mu\textrm{m}$ when applying a 150V square wave voltage at 300Hz across a 300${\mu}\ell$ thick piezoelectric disc. While the square wave driving voltage is applied to the piezoelectric disc of the actuator, the flow rate is measured by fluid displacement variation of the outlet tube. The flow rate of micropump increases with enhancing the applied voltage due to the increase of diaphragm deflection. The flow rate and the backpressure of the micropump with diffusers are about 32.9${\mu}\ell$/min and 173Pa respectively for the above mentioned deflection conditions.

Seismic Response Analyses of Seismically Isolated Structures Using the Laminated Rubber Bearings

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.387-395
    • /
    • 1998
  • In general, the laminated rubber bearing (LRB), a composite structure laminated with the elastic rubber and steel plates, has a complex hysteretic nonlinear characteristics in relationships between the restoring force and shear deflection. The representative nonlinear characteristics of LRB include the change of hysteresis loop with cyclic shear deflections and the hardening effects at large shear deflection regions. Changes of the hysteresis loop of LRB with cyclic shear deflections affect the horizontal stiffness and the damping characteristics. The hardening behavior of LRB in large shear deflection region results in an increased horizontal stiffness and therefore, has a great impacton the seismic responses. In this paper, the seismic response analysis is carried out using the modified hysteretic bi-linear model of LRB, which takes into account the hysteresis loop change and the hardening behavior with cyclic shear deflection. The results on seismic responses are compared with those obtained using the widely used hysteretic hi-linear model. The new model is found to reveal the greater amount of peak acceleration response.

  • PDF

미세형상 가공을 위한 Micro Slot 가공에서의 공구변형에 의한 가공오차 보상 (Machining Error Compensation for Tool Deflection in Micro Slot-Cutting Processes for Fabrication of Micro Shapes)

  • 손종인;윤길상;서태일
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.121-127
    • /
    • 2008
  • Micro end-milling has been becoming an important machining process to manufacture a number of small products such as micro-devices, bio-chips, micro-patterns and so on. Despite the importance of micro end-milling, many related researches have given grand efforts to micro end-milling phenomenon, for example, micro end-milling mechanism, cutting force modeling and machinability. This paper strongly concerned actual problem, micro tool deflection, which causes excessive machining errors on the workpiece. To solve this problem, machining error prediction method was proposed through a series of test micro cutting and analysis of their SEM images. An iterative algorithm was applied in order to obtain corrected tool path which allows reducing machining errors in spite of tool deflection. Experiments are carried out to validate the proposed approaches. In result, remarkable error reduction could be obtained.

Camber calculation of prestressed concrete I-Girder considering geometric nonlinearity

  • Atmaca, Barbaros;Ates, Sevket
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2017
  • Prestressed concrete I-girders are subject to different load types at their construction stages. At the time of strand release, i.e., detensioning, prestressed concrete girders are under the effect of dead and prestressing loads. At this stage, the camber, total net upward deflection, of prestressed girder is summation of the upward deflection due to the prestressing force and the downward deflection due to dead loads. For the calculation of the upward deflection, it is generally considered that prestressed concrete I-girder behaves linear-elastic. However, the field measurements on total net upward deflection of prestressed I-girder after detensioning show contradictory results. In this paper, camber calculations with the linear-elastic beam and elastic-stability theories are presented. One of a typical precast I-girder with 120 cm height and 31.5 m effective span length is selected as a case study. 3D finite element model (FEM) of the girder is developed by SAP2000 software, and the deflections of girder are obtained from linear and nonlinear-static analyses. Only geometric nonlinearity is taken into account. The material test and field measurement of this study are performed at prestressing girder plant. The results of the linear-elastic beam and elastic-stability theories are compared with FEM results and field measurements. It is seen that the camber predicted by elastic-stability theory gives acceptable results than the linear-elastic beam theory while strand releasing.

Theoretical and experimental study on deflection of steel-concrete composite truss beams

  • Wang, Junli;Li, Tian;Luo, Lisheng
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.91-106
    • /
    • 2018
  • This paper investigates the deflection of the steel-concrete composite truss beam (SCCTB) at the serviceability limit state. A precise solution for the distributed uplift force of the SCCTB, considering five different loading types, is first derived based on the differential and equilibrium equations. Furthermore, its approximate solution is proposed for practical applications. Subsequently, the shear slip effect corresponding to the shear stiffness of the stub connectors, uplift effect corresponding to the axial stiffness of the stub connectors and shear effect corresponding to the brace deformation of the steel truss are considered in the derivation of deflection. Formulae for estimating the SCCTB deflection are proposed. Moreover, based on the proposed formulae, a practical design method is developed to provide an effective and convenient tool for designers to estimate the SCCTB deflection. Flexure tests are carried out on three SCCTBs. It is observed that the SCCTB stiffness and ultimate load increase with an increase in the shear interaction factor. Finally, the reliability of the practical design method is accurately verified based on the available experimental results.

교정용 열가소성 재료의 두께와 변형량이 재료의 물리적 특성에 미치는 영향 (The effect of thickness and deflection of orthodontic thermoplastic materials on its mechanical properties)

  • 민샘;황충주;유형석;이상배;차정열
    • 대한치과교정학회지
    • /
    • 제40권1호
    • /
    • pp.16-26
    • /
    • 2010
  • 다양한 열가소성 교정 재료를 이용한 성공적인 임상 결과가 보고되었지만, 재료의 물리적 성질에 관한 연구는 많지 않다. 본 연구는 열가소성 재료의 종류, 두께, 변형량과 반복변형에 따른 변형 시 필요한 하중과, 변형되었던 재료가 원래의 상태(resting position)로 돌아갈 때 재료의 복원력을 평가하였다. 실험적인 모델의 조건에서 투명교정장치의 재료로 쓰이는 4가지 종류의 열가소성 재료(0.5 mm, 0.75 mm, 1.0 mm 두께)를 최종 변형량이 2.0 mm가 될 때까지의 하중(gf)을 측정하였다. 변형 후 탄성력에 의해 원점으로 회복될 때, 재료의 복원력(gf/$mm^2$)을 측정하였다. 동일한 방법으로 5회 반복변형 동안의 하중과 복원력의 변화를 측정하였다. 그 결과, 열가소성 재료의 두께와 변형량에 대해 상호 교호작용이 관찰되었으며 (p < 0.05), 열가소성 재료의 두께 및 변형량이 하중과 복원력에 가장 큰 영향력을 나타내었고 재료 간 혹은 제품 간의 하중과 복원력에는 유의한 차이가 없었다. 두께가 1.0 mm이거나 또는 1.0 mm 이상 변형인 경우 최소 159 gf의 하중이 필요하였고, 최소 16 gf/$mm^2$의 복원력이 발생하였다. 각 실험군에 대한 반복하중 시 하중과 복원력에서 유의한 차이가 관찰되었고 (p < 0.01), 평균 10 - 17%의 하중 감소와 4 - 7%의 복원력 감소가 관찰되었다. 이상의 결과, 하중과 복원력에 가장 영향을 많이 주는 요소는 재료의 두께와 치아의 이동량 이었다. 제품에 상관없이 두께가 1.0 mm 이상인 재료를 사용하거나 치아를 1.0 mm 이상 이동 시에는 과도한 힘이 발생하였다. 따라서 투명교정장치를 이용하여 생리적으로 치아를 이동시키기 위해서는 초기 치아배열을 위해 사용하는 열가소성 재료의 두께와 셋업 시 치아 이동량을 고려하여 과도한 힘이 가해지지 않도록 해야 한다. 또한 반복하중 후에 열가소성 재료의 피로도에 의한 힘의 상쇄를 고려하여 임상에 적용해야 한다.

유한요소해석을 이용한 응력적층 바닥판의 구조성능평가 (Structural Performance Evaluation on Stress-Laminated Timber Bridge Deck Using Finite Element Analysis)

  • 신유경;엄창득;이상준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권1호
    • /
    • pp.20-26
    • /
    • 2014
  • 본 연구에서는 유한요소해석을 이용하여 응력적층 바닥판의 구조성능을 평가하였다. 바닥판의 구조성능은 처짐과 응력, 압체력의 변화로 평가할 수 있다. 하중 재하 후 바닥판의 처짐 형상을 확인한 결과 하나의 판처럼 거동하는 것을 확인하였다. 이는 압체력에 의해 각 부재 사이에 마찰력이 작용했기 때문이다. 또한 초기 압체력과 산출된 압체력을 비교한 결과 바닥판의 처짐과 함께 압체력이 감소했다. 이는 하중에 의해 바닥판의 변형이 발생하면서 작용하는 힘이 줄어듦에 따라 압체력이 감소한 것으로 판단된다. 그러나 재료의 소성 특성이 제대로 반영되지 않았기 때문에 잔류응력과 잔류변형이 고려되지 않았으므로 추후 이에 대한 연구가 필요하다.