• 제목/요약/키워드: force-deflection

검색결과 636건 처리시간 0.025초

절삭공구의 열변형 오차 및 절삭력 변형 오차에 관한 연구 (Study of the thermal deflection error and the deflection error induced by the cutting force)

  • 오명석;윤인준;백대균
    • 한국산업융합학회 논문집
    • /
    • 제5권4호
    • /
    • pp.373-378
    • /
    • 2002
  • This paper presents a method to predict tool deflection induced by the thermal distribution and the cutting force using FEM in milling operation. The thermal distribution of cutting tool was predicted using FEM after measuring the temperature of the end of tool and of the tool holder. The thermal deflection of cutting tool was predicted using FEM as well. The tool deflection induced by the cutting force was analyzed with the solid model of cutting tool. An end mill tool caused most of tool deflection comparing to tool holder. Most of thermal deflection came from Z-direction and most of tool deflection induced by the cutting force came from X and Y direction. Precision cutting will be accomplished when tool locations are generated considering the thermal deflection of cutting tool and the tool deflection induced by the cutting force in CAD/CAM.

  • PDF

공구변형을 고려한 볼엔드밀의 절삭력과 가공오차 예측 (Prediction of Cutting Force and Machinig Error in the Ball-end Milling Process)

  • 조필주;김규만;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1003-1008
    • /
    • 1997
  • In this paper, the prediction of cutting force and tool deflection in the ball-end milling process are studied. Identifying various cutting region using Z-map, cutting force in the ball-end milling process can be predicted. Cutting force deflects the tool and the tool deflection changes the cutting force. Tool deflection is included in the cutting force prediction. Tool deflecition also causes machining error of the machined surface. A series of experiments were performed to verify the simulated cutting force and machining error.

  • PDF

볼 엔드밀에 의한 반구 가공시 이송속도 변화에 따른 가공정밀도 (Machining Precision according to the Change of Feedrate when Ball Endmilling of Semisphere Shape)

  • 임채열;우정윤;김종업;왕덕현;김원일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.930-933
    • /
    • 2000
  • Experimental study was conducted for finding the characteristics of machining precision according to the change of feedrate when ball endmilling of semisphere shape. The values of tool deflection and cutting force were measured simultaneously by the systems of eddy-current sensor and dynamometer. The machining precision was analyzed by roundness values, which were deeply relating with tool deflection and forces. the roundness was decreased in down-milling than in up-milling for each feedrate. As the cutting edge is moved to radius direction on the tool path, the tool deflection and the cutting force were seemed to be decreased. As the tool path was moved downward, the values of roundness, cutting force and tool deflection were obtained better ones. When compared the values of roundness, cutting force and tool deflection for different feedrate, the best machining accuracy was obtained at feed rate of 90mm/min in down-milling.

  • PDF

볼 엔드밀 가공에서의 공구 처짐 예측과 정밀 가공에 관한 연구 (A Study on the Prediction of Tool Deflection and Precision Machining in Ball End Milling Process)

  • 조현덕;양민양
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1669-1680
    • /
    • 1992
  • 본 연구에서는 볼 엔드밀 가공에서 공구계의 처짐을 고려한 절삭력과 처짐을 예측하고, 처짐의 예측으로 가공 정밀도를 향상시키는 이송 속도와 헬릭스 각의 선정 에 대해서 고찰한다.

반도체 리드프레임의 형상 동결성에 관한 연구 (The Prediction of Defection for the Shape Fixability on the Stamped Lead Frame)

  • 조형근;김동환;이선봉;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.77-80
    • /
    • 2001
  • IC lead frame needs the precision shape for good efficiency. In the blanking process, there are many parameter effected the dimensional accuracy : lead width, blanking order, striper force, tool clearance etc. In this research, the4 undesirable defects appeared in the final blanking process. so we measured the deflection of lead according to the stripper force using $PAM-STAMP_{TM}$. In the result, the deflection was decreased by increasing the stripper force properly. and we changed the blanking order on the test model. In the blanking order, deflection is good from the outer line position blanking to center line position. so we can design the precision die without tryout by the prediction of the lead deflection.

  • PDF

다중주파수 AFM 원리 및 연구 동향 (Principle and Applications of Multifrequency Atomic Force Microscopy)

  • 이수일;김일광
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.88-89
    • /
    • 2014
  • In dynamic force microscopy, the cantilever oscillates at a resonant frequency, and the tip deflection is measured at this frequency. The cantilever deflection is, however, highly nonlinear, and the surface properties can be embedded in the deflection at the frequencies other than the original resonant frequency of the cantilever. Multifrequency atomic force microscopy includes the excitation and detection of the deflection in two or more frequencies which are higher harmonics or eigenmodes. This can overcome the limitations of conventional atomic force microscope. We reviewed the multifrequency atomic force microscopy and its applications in many fields.

  • PDF

이동하중과 축하중이 작용하는 유연한 기초위에 지지된 무한보의 동특성 (Dynamic characteristics of flexibly supported infinite beam subjected to an axial force and a moving load)

  • 홍동균;김광식
    • 오토저널
    • /
    • 제4권3호
    • /
    • pp.56-68
    • /
    • 1982
  • This paper presents analytic solutions of defection and their resonance diagrams for a uniform beam of infinite length subjected to an constant axial force and moving transverse load simultaneously. Steady solutions are obtained by a time-independent coordinate moving with the load. The supporting foundation includes damping effects. The influences of the axial force, the damping coefficient and the load velocity on the beam response are studied. The limiting cases of no damping and critical damping are also investigate. The profiles of the deflection of the beam are shown graphically for several values of the load speed, the axial force and damping parameters. Form the results, following conclusions have been reached. 1. The critical velocity .THETA.cr decreases as the axial compressive force increases, but increases as the axial tensile force increase. 2. At the critical velocity .THETA.cr the deflection have a tendency to decrease as the axial tensile force increases and to increase gradually as the axial compressive force increases. 3. In case if relatively small dampings, the deflection increases suddenly as the velocity of the moving load approaches the critical velocity, and it reachs its maximum at the critical velocity, and it decreases and become greatly affected by the axial force as the velocity increases further. 4. in case of relatively large dampings, as the velocity increases the deflection decreases gradually and it is affected little by the axial load.

  • PDF

가공경사면 위치에 따른 볼엔드밀가공과 회전식 형조방전가공 특성 (Characteristics of Ball End Milling and Rotary Die-sinking Electrical Discharge Machining for the Cutting Inclination Location)

  • 왕덕현;김원일;박성은;박창수
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.73-80
    • /
    • 2002
  • In this study, work materials of the ree form surface shape was machined by ball end mill cutter according to the change of cutting location and depth, and the acquired data of cutting force, tool deflection and shape accuracy were analyzed. Cutting force results were obtained with tool dynamometer and tool deflection values were measured by a couple of eddy-current sensors. Shape accuracy was obtained by roundness tester and surface profile measuring machine. As inclination angle was decreased, cutting force was increased. Cutting force showed large value at $105^{\circ}$ and $150^{\circ}$. Tool deflection was less at down milling than at up milling, decreased at 45$^{\circ}$ and 120$^{\circ}$, and shown large tool deflection at $150^{\circ}$. Roughness values were found to be bad in the inside of surface shape tool deflection. Surface accuracy was obtained better precision in down milling than in up milling.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

스테이플 조인트를 이용한 전자력 구동 Al 미러의 제작 (Fabrication of electromagnetically actuated Al mirror with staple joint structure)

  • 임태선;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1884-1886
    • /
    • 2001
  • In this study, we fabricated Al mirror driven by electromagnetic force. Because the mirror has Ni staple joint, it reduces the deflection angle of torsion spring for the maximum deflection of mirror. Therefore the magnetic field for maximum deflection can be reduced, By additional electrostatic force, the deflection angle of mirror plate can be increased to $90^{\circ}$. The fabricated mirror is actuated by electromagnetic force of a simple solenoid. The maximum deflection angle by magnetic field is about $86^{\circ}$ with $1.2{\times}10^4$ A/m.

  • PDF