• Title/Summary/Keyword: force-based

Search Result 6,429, Processing Time 0.035 seconds

Implementation of Web Based Monitoring Systems for Multi-Axis Force Control Systems (다축 힘제어 시스템을 위한 웹기반 감시시스템 구현)

  • Lee, Hyun-Chul;Nam, Hyun-Do;Kang, Chul-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2674-2676
    • /
    • 2004
  • In this paper, web based monitoring systems are implemented for multi-axis force control systems of an intelligence robot. A web based monitoring system is implemented by porting Linux at embeded systems which include Xscale processors. A divice driver is developed to receive data from multy-axis force sensors in Linux operation systems. To control this device driver, a soket program for web browser is also developped.

  • PDF

A Study on Application of Force-based Track Irregularity Analysis Method (하중기반의 궤도틀림 분석기법 적용에 관한 연구)

  • Hwang, Seon-Kwon;Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.547-552
    • /
    • 2022
  • In this study, shape-based track management by analyzing track irregularity was studied in terms of force-based track irregularity analysis by numerical analysis of wheel-rail interaction force using by the measured vertical irregularity. The effect of the vertical irregularity of the track due to the difference in track types on the wheel-rail interaction force and the track acceleration in the connecting section of the sleeper floating track and the direct fixation track on concrete bed were analyzed. As the results of this study, the measured vertical irregularity was directly affect the vertical wheel load (the wheel-rail interaction force) and the rail acceleration, and it has been demonstrated to change consistently. In this study, the adequacy and necessity of the force-based track irregularity analysis method was verified based on the wheel-rail interaction analysis using the the measured vertical irregularity.

Internal force monitoring design of long span bridges based on ultimate bearing capacity ratios of structural components

  • Hu, Ke;Xie, Zheng;Wang, Zuo-Cai;Ren, Wei-Xin;Chen, Lei-Ke
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.93-110
    • /
    • 2018
  • In order to provide a novel strategy for long-span bridge health monitoring system design, this paper proposes a novel ultimate bearing capacity ratios based bridge internal force monitoring design method. The bridge ultimate bearing capacity analysis theories are briefly described. Then, based on the ultimate bearing capacity of the structural component, the component ultimate bearing capacity ratio, the uniformity of ultimate bearing capacity ratio, and the reference of component ultimate bearing capacity ratio are defined. Based on the defined indices, the high bearing components can then be found, and the internal force monitoring system can be designed. Finally, the proposed method is applied to the bridge health monitoring system design of the second highway bridge of Wuhu Yangtze river. Through the ultimate bearing capacity analysis of the bridge in eight load conditions, the high bearing components are found based on the proposed method. The bridge internal force monitoring system is then preliminary designed. The results show that the proposed method can provide quantitative criteria for sensors layout. The monitoring components based on the proposed method are consistent with the actual failure process of the bridge, and can reduce the monitoring of low bearing components. For the second highway bridge of Wuhu Yangtze river, only 59 components are designed to be monitored their internal forces. Therefore, the bridge internal force monitoring system based on the ultimate bearing capacity ratio can decrease the number of monitored components and the cost of the whole monitoring system.

Hybrid position/force control in the same direction for assembly operation in variable friction environment (마찰이 있는 조립작업을 위한 동일 방향 혼합위치/힘 제어)

  • 김상연;권동수;김문상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.253-256
    • /
    • 1997
  • This paper proposes a control strategy of position and force control in the same direction based on hybrid position/force control. In order to control position and force in the same direction, a weighting matrix is introduced instead of a selection matrix suggested by Raibert and Craig. The major part of the controller output comes from the position controller when a position control error is large, from the force controller when a position control error is large. The proposed algorithm is implemented by the simulation and experiment focusing on the peg-in-hole task where friction exist significantly and is not constant. It also adopts and event control scheme for more efficient performance.

  • PDF

Quantitative Evaluation of Rehabilitation Therapy Based on a Two-Finger Force Measurement System

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.357-361
    • /
    • 2014
  • This paper describes the evaluation of the effectiveness of rehabilitation therapy for patients with finger paralysis based on a two-finger force measurement system (TFFMS). The paralyzed fingers can be recovered through rehabilitation therapies. The finger pressing force of the patients can be measured utilizing the TFFMS previously developed by the author [7]. The TFFMS, however, has not been fully adopted as a standard method for evaluating the therapy owing to the lack of a standard protocol. The pressing force of healthy volunteers and patients is analyzed with the TFFMS to explore the feasibility of the TFFMS as an evaluation device. The test confirms that the established standard protocol is useful to quantitatively assess the progress of finger rehabilitation therapy.

PREVIEW CONTROL FOR EDGE-FOLLOWING USING ROBOT FORCE CONTROL

  • Yong, Boojoong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.100-111
    • /
    • 1999
  • This paper resents a discrete-time model of an edge-following with accommodation force control. Since an irregular workpiece shape causes disturbances to the system while following an edge, the use of preview control is proposed to improve the system performance. The preview control employs future information of the workpiece contour shape, and it can be developed by LQ-optimal control principles. This study provides a general method how to utilize the local future information obtained by the finite preview to minimize an optimality criterion evaluated over a problem duration. The force controller is designed based on the preview control scheme, and then implemented on a VME-based computer. Experimental results using an industrial robot show that the preview control system achieves faster tracking speed and better force regulation than the conventional nonpreview control system.

  • PDF

Cutting Force Control of a CNC Machine Using Fuzzy Theory (퍼지이론을 이용한 CNC 공작기계의 절삭력제어)

  • Noh, Sang-Hyun;Lee, Sang-Gyu;Park, Un-Hwan;Lim, Yeun-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.123-130
    • /
    • 2000
  • Fuzzy control is proposed to regulate cutting force in turning operations under varying cutting conditions. The traditional linear controllers based on crisp mathematical model cannot effectively control cutting force becasue of the nonlinear dynamics of turning operations. The proposed fuzzy controller is based on operator experience and expert knowledge. The membership functions for the inputs and the output of the controller are designed. Cutting force is regulated by adjusting feedrate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by experiments. The results of experiments show that the proposed fuzzy controller has a good cutting force regulation over a wide range of cutting conditions.

  • PDF

Direct Control of a Passive Haptic Device Based on Passive Force Manipulability Ellipsoid Analysis

  • Changhyun Cho;Kim, Munsang;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.238-246
    • /
    • 2004
  • In displaying a virtual wall using a passive haptic device equipped with passive actuators such as electric brakes, unsmooth motion frequently occurs. This undesirable behavior is attributed to time delay due to slowness in the virtual environment update and force approximation due to the inability of a brake to generate torque in arbitrary directions. In this paper a new control scheme called direct control is proposed to achieve smooth display on the wall-following task with a passive haptic device. In direct control, brakes are controlled so that the normal component of a resultant force at the end-effector vanishes, based on the force analysis at the end-effector of the passive haptic device using the passive FME (Force Manipulability Ellipsoid). Various experiments have been conducted to verify the validity of the direct control scheme with a 2-link passive haptic system.

Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications

  • Kim, Deok-Ho;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.789-797
    • /
    • 2004
  • The nanoscale sensing and manipulation have become a challenging issue in micro/nano-robotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in micro robotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a micro robotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.

Anti-Slip Control for Wheeled Robot Based on Disturbance Observer (외란 관측기를 이용한 이동 로봇의 슬립 제어)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Jin-Whan;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.50-52
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has slip state. First of all, this paper models adhesion characteristics and slip in wheeled robot. Secondly, the paper proposes estimation method of adhesion force coefficient according to slip velocity. In oder to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. The paper proposes an anti-slip control system based on an ordinary disturbance observer, that is, the anti-slip control is achieved by reducing the driving torque enough to give maximum adhesion force coefficient. These procedure is implemented using a Pioneer 2-DXE parameter.

  • PDF